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In this dissertation we present special-purpose volume rendering architec-

tures that are capable of rendering high-resolution (e.g., 10243) datasets at 30

frames per second. The architectures, Cube-3 and Cube-4, exploit a high de-

gree of parallelism to provide real-time parallel and perspective viewing from

arbitrary directions. They allow for interactive control of rendering and projec-

tion parameters and the direct visualization of dynamically changing volume

data.

The underlying algorithm uses lookup-tables for parallel and perspective

ray-casting with tri-linear interpolation of samples along rays. The algorithm

performs surface normal estimation from cached interpolated samples. Shad-

ing and classi�cation are part of the pipeline and do not require any pre-

processing. The algorithm allows for a pipelined implementation of ray-casting

where each voxel is accessed exactly once per projection.
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All architectures presented in this dissertation use a high-bandwidth vector

memory system. A linear skewing of the address space allows for conict-free

access to scanlines of the volume data. Cube-3 implements ray-parallel ray-

casting where data along viewing rays are processed in parallel. However, the

architecture requires a global communication network which ultimately limits

the performance and the scalability of Cube-3.

Cube-4 operates on data of several neighboring rays. Depending on how the

algorithm proceeds we call this approach beam- or slice-parallel. The beam-

parallel approach follows a group of rays in viewing direction, whereas the

slice-parallel approach operates on data slices parallel to a face of the volume

data. We developed an innovative parallel dataow scheme that requires no

global communication except at the pixel level. This combines the bene�ts of

very high memory bandwidth, modularity, and scalability, a result which has

not been achieved before. Possible hardware implementations are PCI boards

for 2563, VME boards for 5123, and multiple boards for 10243 datasets, all

with 16-bit voxels and 30 projections per second.

We have simulated the algorithm and architectures and have implemented

a working prototype of the Cube-4 slice-parallel hardware on the Teramac

con�gurable custom computer at Hewlett-Packard Labs. Our results indicate

true real-time performance for high-resolution datasets and linear scalability

of performance with the number of processing pipelines.
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Chapter 1

Introduction

Visualization of scienti�c, engineering or biomedical data is a growing �eld

within computer graphics. In many cases the objects or phenomena being

studied are volumetric, typically represented as a three-dimensional grid of vol-

ume elements, or voxels. 3D medical acquisition techniques, such as Magnetic

Resonance Imaging (MRI) and Computed Tomography (CT) [SF90a], produce

a sequence of 2D cross sections of internal organs that can be reconstructed

into a 3D dataset [UH84]. Confocal microscopes are being used to acquire the

3D internal structure of cells in bio-medical applications [BSVN89]. Supercom-

puter simulations based on 3D �nite element models or computational uid

dynamics produce large amounts of volumetric data for a variety of applica-

tions, such as aerodynamics, weather forecast, or astrophysics. Another source

of volume data are geometrical models that have been synthesized (voxelized)

into 3D datasets using techniques of volume graphics [KCY93, Wan95].

Volume rendering has become a key technology in the visualization of vol-

umetric data [Kau91]. It encompasses an array of techniques for displaying

images directly from the 3D data without intermediate conversion to a surface

1
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representation. Volume rendering allows to fully reveal the internal structure

of the 3D data, including amorphous and semi-transparent features. Figure 1

shows a volume rendering of a MRI scan of a human head.

Figure 1: Volume renderings of a MRI scan of a human head.

It is essential for the investigation and understanding of 3D datasets to

provide real-time frame rates, typically de�ned to be more than 10 and prefer-

ably 30 frames/sec. The real-time rotation of 3D objects in space under user

control makes the renderings appear more realistic due to the kinetic depth



CHAPTER 1. INTRODUCTION 3

e�ects [SM93]. In many applications volume rendering may also be used to

directly view changes of dynamic 3D data over time for 4D (spatial-temporal)

visualization. Examples are the real-time analysis of an in-vivo specimen under

a confocal microscope, the real-time study of in-situ uid ow or crack forma-

tion in rocks under Computed Micro-Tomography (CMT), or the visualization

of a beating heart under real-time 3D ultrasound.

Of particular importance in volume visualization is immediate visual feed-

back during the interactive change of rendering parameters (e.g., data clas-

si�cation and shading). When exploring new data, the image depends to a

large extent on the subjective goals of the user. Real-time visual feedback is

essential for the experimentation with di�erent rendering parameters and the

exploration of the parameter space.

Real-time volume rendering is extremely compute-intensive. This problem

is aggravated by the continuing trend towards larger datasets. The advent of

high-resolution sampling devices, faster supercomputers, and more accurate

modeling techniques will make high-resolution datasets the norm. However,

rendering a high-resolution dataset of 10243 16-bit voxels at 30 Hz, for example,

requires 2 GBytes of storage, a memory transfer rate of 60 GBytes per second,

and approximately 300 billion instructions per second. This is assuming each

voxel is accessed exactly once, with a rendering cost of only 10 instructions

per voxel. These requirements are several orders of magnitude beyond the

capabilities of existing conventional machines.

The high computational requirements of traditional computer graphics led

to the development of special-purpose graphics engines, primarily for polygon

rendering. Similarly, the special needs of volume rendering, where an image

must be computed rapidly and repeatedly from a volume dataset, lends it-

self to the development of special-purpose volume rendering architectures. A
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dedicated accelerator, which separates volume rendering from general-purpose

computing, seems to be best suited to provide real-time volume rendering on

standard deskside or desktop computers. It may also lead to the direct inte-

gration of volume visualization hardware with real-time acquisition devices, in

much the same way as fast signal processing hardware became part of today's

scanning devices.

1.1 Design Objectives

The main goal of this research is to develop a special-purpose real-time volume

visualization architecture for high-resolution datasets that will support 4D

volume visualization. We have set the following design objectives based on

what we believe to be important features of a real-time volume rendering

system:

Real-Time Frame Rates: To create the illusion of smooth motion, the im-

age must be updated a minimum of 24 times per second. The architec-

tures presented in this dissertation aim at achieving projection rates of

30 frames/sec.

4D Visualization: The architecture has to allow for the real-time input of

volumetric data. The overall latency of the system should be no more

than one frame time.

High-Resolution Datasets: The architecture has to be able to visualize

dataset resolutions of 512 � 512 � 512 data samples or higher in real-

time. Each sample uses 8- or 16-bits.

Scalability: The design should be modular and the performance should ide-

ally scale almost linearly in the number of modules.
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High Image Quality: The images must be of high quality, including surface

shading, depth cues, and the provision of transparency. Special care has

to be taken to avoid image artifacts such as spatial or temporal aliasing

[Wol90].

Interactive Parameter Changes: The algorithm and hardware has to al-

low for immediate visual feedback during the interactive change of pa-

rameters such as shading, data classi�cation, and projection modes.

1.2 Design Approach

The main aspects in the development of any special-purpose hardware are

the design of the algorithm and the architecture. Similarly, the design of

special-purpose hardware for volume rendering requires an understanding of

the relationship between visualization algorithms and hardware structures.

However, computer architects occasionally come up with designs that can not

be built or are not cost e�ective. To remedy these problems, we took an

experimental approach for this research that combines design, analysis, and

prototype implementation, as illustrated in Figure 2 (after [Woo90]).

Architecture
Design

Simulation &
Analysis

Algorithm
Design

Prototype
Design

Prototype
Evaluation

Figure 2: Experimental Design Approach.
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During algorithm design, we try to recast the basic volume rendering algo-

rithm into a form more suitable for hardware realization. In the architectural

domain, this algorithm is reformulated into a datapath structure such as to

further improve performance [Kae96]. Both algorithm and architectural de-

sign have to be carefully analyzed and simulated to re�ne the designs and to

understand their behavior. Once a su�ciently feasible and simulated solution

exists, it is necessary to test it by building an experimental prototype. Only

the implementation of real hardware will unveil design errors and performance

trade-o�s that were not known during analysis and simulation. Performance

of the design can be measured on the prototype by rendering real datasets.

Finally, we use the experience and performance results from the prototype

implementation to further re�ne the design, possibly by going back to the al-

gorithmic domain. Throughout the project we must keep an eye on the design

objectives and try to meet them at all stages of the design process.

1.3 Contributions of this Dissertation

Our research focuses on ray-casting of regular datasets. Ray-casting o�ers

room for algorithmic improvements while still allowing for high image quality.

We modi�ed the original ray-casting algorithm to make it better suited for a

parallel hardware realization. We developed di�erent parallelizations of the

ray-casting algorithm and designed several new real-time volume rendering

architectures. During the architectural design we reformulated the algorithm

into an e�cient memory and datapath structure. We extensively simulated the

algorithms and architectures and have implemented a working hardware pro-

totype on the Teramac, a con�gurable custom computing machine developed

by Hewlett-Packard Laboratories.
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The main result of our research is Cube-4, a scalable volume rendering ar-

chitecture that meets all of our design objectives. Cube-4 di�ers from previous

work in that it requires no global communication of data except at the pixel

level. Using a specially skewed memory interleaving, we were able to develop a

parallel dataow model that leads to local, �xed-bandwidth interconnections

between processing elements. This combines the bene�ts of very high memory

bandwidth, modularity, and scalability, a result which has not been achieved

before. Possible hardware implementations of Cube-4 for 30 frames per sec-

ond projection rates range from an inexpensive PCI board accelerator for 2563

datasets, to a workstation accelerator board for 5123 datasets, and to a high-

end visualization server for 10243 or higher resolutions. The cost-performance

ratio of Cube-4 is several orders of magnitude better than existing solutions.

1.4 Dissertation Outline

The material in this dissertation is organized following the design approach

outlined in Figure 2. The chapters are roughly grouped according to research

phases, as shown in Figure 3.

Chapter 2 provides background and terminology used throughout this dis-

sertation. We describe several approaches to volume rendering and discuss its

performance requirements to motivate the design of special purpose hardware.

We look at several software acceleration techniques and discuss them in the

context of our project goals.

Chapter 3 contains a summary of related research in the �eld of interactive

or real-time volume rendering. We briey summarize software based tech-

niques on general-purpose multi-processor systems and then discuss several

special-purpose graphics and volume rendering accelerators. Up to date, no
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Architecture
Design

Simulation &
Analysis

Algorithm
Design

Prototype
Design

Prototype
Evaluation

Chapters 4 & 5 Chapter 6 Chapters 7, 8, 9

Chapter 9

Chapters 2 & 3: Background & Prior Work

Figure 3: Dissertation Outline.

system is capable of delivering the required level of performance as stated in

Section 1.1.

In Chapter 4, we introduce the basic ray-casting algorithm. A detailed

look at its performance bottlenecks reveals the primary issues in real-time

ray-casting, which are uniform and regular memory access, parallel processing,

and a fully pipelined dataow.

In Chapter 5, we examine ways of improving the basic algorithm. We de-

scribe two important concepts, namely lookup-table based ray-casting and new

methods for surface normal estimation using previously interpolated samples.

Both of them lead to uniform memory access and a fully pipelined ray-casting

algorithm.

In Chapter 6, we discuss several issues related to the design of high-

performance parallel architectures. The chapter starts by giving an overview of

the design issues for high-bandwidth memory systems. We then give a formal
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description of the parallel memory system that is the basis for all architec-

tures presented in this dissertation. We transform the pipelined ray-casting

algorithm into the architectural domain and introduce more parallelism. The

framework in this chapter leads us to three ways of parallelizing the ray-casting

algorithm, called ray-, beam-, and slice-parallel ray-casting. These parallel

algorithms are the basis for the three architectures that we describe in the

remaining chapters of this dissertation.

In Chapter 7, we describe the Cube-3 architecture, an implementation of

ray-parallel ray-casting. We show how to use coherence between neighboring

rays to minimize memory access during interpolation. We evaluate the er-

rors introduced by this approach using experiments and measurements on real

and synthetic datasets. We describe the Cube-3 architecture and examine its

problems due to the global communication of voxel data.

In Chapter 8, we present the Cube-4 beam-parallel dataow model that

eliminates the global communication bottleneck of Cube-3. We show how this

dataow leads to local interconnections between memory and processing ele-

ments. We describe the Cube-4 beam-parallel architecture and discuss issues

related to an actual hardware implementation of Cube-4.

In Chapter 9, we present the Cube-4 slice-parallel architecture, the main

contribution of this dissertation. We use signal ow graphs to formally describe

the dataow during slice-parallel processing. We also present results from our

prototype implementation of Cube-4 on the Teramac custom computing ma-

chine at HP Labs. The prototype implementation demonstrates the feasibility

of Cube-4. Our performance results con�rm the theoretical linear increase in

rendering performance with increasing number of processing pipelines. Finally,

we summarize our work and suggest areas for future research in Chapter 10.



Chapter 2

Preliminaries

In this chapter, we introduce background material and terminology used

throughout the rest of this dissertation. We review the fundamental concepts

in volume rendering and summarize the basic volume rendering algorithms.

We look at the performance requirements of real-time volume rendering under

simpli�ed algorithmic assumptions. We then discuss several acceleration tech-

niques for volume rendering and point out their shortcomings in the context

of our project goals.

2.1 Volume Rendering Basics

A volumetric dataset consists of information at sample locations in some space.

The information may be scalar (such as density in a computed tomography

(CT) scan), vector (such as velocity in a ow �eld), or a combination (such as

energy, density, and momentum in computational uid dynamics). The space

is usually three-dimensional, either consisting of three spatial dimensions or

another combination of spatial and frequency dimensions.

10
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In many applications the data is sampled on a rectilinear grid, represented

as a 3D grid of volume elements, so called voxels. Each voxel is a quantum

unit of volume that has a value associated with it representing some property

of the object or phenomenon. If all the voxels are identical cubes the dataset

is said to be regular. Examples of regular or rectilinear datasets include 3D

reconstructed medical data, simulated datasets from computational uid dy-

namics or computed �nite element models, to name just a few (see [Kau91,

Chapter 7]). Other types of datasets can be classi�ed into curvilinear grids,

which can be thought of as resulting from a warping of a regular grid, and

unstructured grids, which consist of arbitrary shaped cells with no particular

relation to rectilinear grids [SK90]. In this work we are concerned with the vi-

sualization of scalar values represented in a rectilinear three-dimensional grid

of voxels.

There are several ways in which the continuous object or phenomenon

represented by the volume dataset can be visualized. One method, re-

ferred to as surface rendering, uses an intermediate geometrical approxima-

tion (e.g., polygons, points) to iso-surfaces inside the three-dimensional scalar

�eld [LC87, CLL+88]. The geometrical constructs can be then viewed on

conventional computer graphics workstations. However, the coercion process

drastically reduces the information content of the data by making a binary

decision as to where surfaces lie. This may introduce artifacts [D�ur88], the

modeling procedure hampers interactive viewing, and internal and amorphous

structures cannot be visualized.

Volume rendering refers to techniques for producing 2D images directly

from the volume data without intermediate constructs. Volume rendering

techniques o�er great exibility in the choice of viewing and rendering param-

eters and overcome the limitations of surface rendering [Kau91]. For a detailed
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discussion of the underlying optical model of volume rendering see [Max95].

Depending on how voxels are processed to generate an image, volume ren-

dering algorithms can be divided into three classes: image-order algorithms,

object-order algorithms, and domain methods. We will briey summarize some

representative algorithms in each class and illustrate their advantages and dis-

advantages. Our presentation is limited to algorithms used for the rendering

of scalar rectilinear datasets. Important classes of volume rendering methods

for non-regular scalar grids, such as cell projection methods [MHC90, WG91],

and for vector data, such as ow-�eld visualization [CM92], will not be dis-

cussed. A more comprehensive summary of volume rendering algorithms can

be found in [Elv92, Kau91, SFF91].

2.2 Image-order Algorithms

Image-order algorithms iterate over all pixels of the output image and deter-

mine the contributions of voxels towards the pixel currently being composed

[TT84, Lev88, Sab88, DH92].

Ray-Casting

Ray-casting is the most commonly used image-order technique. It simulates

optical projections of light rays through the dataset, yielding a simple and

visually accurate mechanism for volume rendering. Rays are cast from the

viewpoint through screen pixels into the volume [Lev88]. The contributions of

all voxels along the rays are calculated and used to �nd the pixel color.

Ray-casting o�ers very high image quality, including the ability to provide
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Viewing Rays

Volume Slices

Image Plane

Figure 4: Ray-Casting Algorithm.

visual depth cues such as shaded surfaces, shadows, and depth cueing. Unfor-

tunately, these advantages come at the price of high computational require-

ments. Ray-casters do not access the volume data in storage order because

of the arbitrary traversal direction of the viewing rays. This leads to poor

spatial locality of data references and requires expensive address arithmetic to

calculate the new resampling locations.

Volumetric Ray-Tracing

In contrast to the related surface based ray-tracing techniques [Whi80], ray-

casting only uses a local illumination model and does not include e�ects of

ray reections or refractions. Volumetric ray-tracing methods try to overcome

this limitation by including global illumination and higher-order light-material

interactions.

Yagel et al. [YCK92] propose a discrete ray-tracing method that leads to

fast implementations because all ray-traversal calculations can be performed
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using integer arithmetic. Sobierajski and Kaufman [SK94, Sob94] developed

a complete framework for volumetric ray-tracing that includes global illumi-

nation e�ects such as shadows, reections of the scene in mirrors, light in-

teraction between multiple volumetric and geometric objects, and volumetric

rendering e�ects such as fog and transparency. The results have been incor-

porated into VolVis, a comprehensive volume visualization system developed

at SUNY Stony Brook1 [ASK92, AHH+94].

Volumetric ray-tracing yields the highest image quality of all volume ren-

dering algorithms. However, it is computationally much more expensive than

ray-casting due to the recursive generation of multiple rays per pixel.

2.3 Object-order Algorithms

Object-order algorithms iterate over the volume data and determine the con-

tribution of each voxel to the screen pixels. All voxel contributions combined

yield the �nal image.

Splatting

Splatting, introduced by Westover [Wes91], convolves every voxel in object

space with a 3D reconstruction �lter and accumulates the voxels contribution

on the image plane. In practice, the computationally expensive three dimen-

sional convolution is replaced by simpler 2D convolution �lters. Lookup tables

for the �lter weights avoid excessive arithmetic complexity [Wes89]. Using this

approximation, the splatting algorithm reduces to projections of object space

slices onto the image plane.

1VolVis is freely available by ftp. To acquire a copy of send email to volviscs.sunysb.edu.
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Splat Kernels

Image Plane

Volume Slices

Figure 5: Splatting Algorithm.

The reconstruction �lter is view-dependent, and its footprint has to be

transformed into image space for each change in viewing direction. For per-

spective projections this footprint is di�erent for each voxel. Because the

computation of the footprints and of the �lter weights is expensive, West-

over proposes to use lookup-tables for rotation-invariant Gaussian resampling

�lters. The approximations to the ideal reconstruction �lter lead to compro-

mises in image quality, typically in the form of blurred edges and reduced

image contrast. The main advantage of splatting is the storage-order access

to the data. This method, in combination with �lter kernel approximations,

allows to trade-o� image quality for fast algorithm execution.

Volume Shearing

Volume shearing algorithms resample the volume data from object space to

the image coordinate space so that the resampled voxels line up on the view-

ing axis in image space [DCH88, UK88]. The voxels are then composited onto
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the viewing plane using ray-casting along axis-aligned viewing rays. The 3D

a�ne transformation between object space and image space can be decom-

posed into three sequential 1D shear operations [Han90]. Alternatively, the

Project

Warp

Shear

Project 

Warp

Shear & Scale

Projection
Center of

a) Parallel Projections b) Perspective Projections

Figure 6: Shear-Warp Algorithm.

viewing transformation can be decomposed into a shear and a 2D image warp-

ing operation [RGC87, LL94]. Perspective projections require an additional

transformation, typically in the form of a scale operation of the sheared data

slices [VFR92, LL94].

Volume shearing algorithms are very e�cient due to the combination of

object order traversal of the data and the scanline-oriented resampling opera-

tions. However, multipass 1D resampling algorithms su�er from high memory

overhead due to the multiple accesses to each voxel. To avoid view-dependent

performance bottlenecks, the volume must be transposed and stored multiple

times as the viewpoint changes [CS80, LL94]. Furthermore, current shear-

warping algorithms use only a 2D reconstruction �lter which may lead to
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image artifacts due to high-frequency aliasing in the third dimension. Shear-

warping is currently the fastest software volume rendering algorithm, achieving

one projection in a few seconds on a regular workstation [LL94] or sub-second

display times on a shared-memory parallel multiprocessor machine [Lac95b].

2.4 Domain Methods

The spatial 3D data is transformed into another domain, such as the frequency,

compression, or wavelet domain. A projection is generated directly from the

domain data.

Frequency Domain Rendering

Frequency domain rendering algorithms are based on the Fourier projection

slice theorem [MO74]. This theorem states that a projection of the 3D data

volume in a certain view direction can be obtained by extracting a 2D slice

perpendicular to that view direction out of the 3D Fourier spectrum and then

inverse Fourier transforming it. At run-time only a 2D Fourier transform

is needed to obtain the projection, reducing the computational complexity

for volume rendering from O(n3) to O(n2 logn). Dunne, Napel, and Rutt

[DNR90], Malzbender [Mal93], Malzbender and Kitson [MK93], and Levoy

[Lev92] have employed the theorem on volumetric datasets to obtain projec-

tions.

A major problem of frequency domain volume rendering is the fact that

the obtained projection is a line integral along the view direction which does

not exhibit any occlusion e�ects. The resulting images are X-ray-like in that

the attenuation e�ects are not accounted for. Totsuka and Levoy [TL93] pro-

posed a linear approximation to the exponential attenuation [Sab88] and an
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Figure 7: Frequency Domain Rendering. (FT = Fourier Transform, IFT =
Inverse Fourier Transform)

alternative shading model to �t the computation within the frequency-domain

rendering framework. Although their images show improved visual depth cues,

the inaccuracy of the linear attenuation model and the lack of occlusion is still

noticeable.

Compression Domain Rendering

E�ective compression methods are imperative to reduce the cost of storing and

transmitting the vast amounts of 3D datasets. Compression domain rendering

allows to perform volume rendering directly on the compressed datasets with-

out the need for a separate decompression step before rendering. Ning and

Hesselink [NH92, NH93] use vector quantization in the spatial domain in order

to allow for arbitrary voxel access and directly render out of the compressed

domain using regular spatial domain volume rendering algorithms.

Chiueh et al. [CHKP94] propose a Fourier transform based compression

and volume rendering technique. The slice projection theorem is used on
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subcubes in the frequency domain to obtain average subcube intensities on

projected subimages. Spatial compositing techniques are used to combine

these subimages according to an exponential attenuation model. The result-

Transform Domain

Transform / Compress

Project

Spatial Domain

Subblocks

Extract

Composite

Subimages
Subimages

Figure 8: Compression Domain Rendering.

ing images show occlusion and improved attenuation e�ects and are hard to

distinguish from those generated by conventional spatial volume rendering

techniques.

Using a similar subcube compression approach based on the discrete cosine

transform (DCT), Yeo and Liu [YL95] achieve high compression ratios and

virtually no loss of image quality when rendering out of the compressed DCT

domain. Other researchers have used the hierarchical compression properties

of the wavelet transform [Mur93, LG95].

Compression domain methods will become increasingly important with the

advent of larger datasets. However, the initial domain transformation is time

consuming and does not allow for real-time update of the dataset. Although

compression domain methods o�er interesting possibilities for the future, at

present they seem not well suited for fast, high-quality volume visualization.
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2.5 Processing Requirements

The main activities in computing are storage, processing, and communication

of data [Wor91]. Volume rendering pushes the limits of current technology

in each of these areas. To get a feeling for the processing requirements, we

consider an average CT study of 512� 512� 64 (224) voxels that we visualize

using a straight forward software implementation of volume rendering. In

order to project an image of the data, the volume rendering algorithm has to

access each voxel at least once per projection. At the very least, the algorithm

needs to compute sample values throughout the volume that are subsequently

displayed on the screen. Because these samples may not fall directly on the

voxel grid, their value must be estimated from the surrounding voxels using an

interpolation technique. The simplest 3D resampling with acceptable image

quality is tri-linear interpolation and requires about 13 multiplications and 20

additions per sample [HCN94] (see Section 4.1.2). Finally, as stated in our

projects goals, we seek real-time rendering rates of 30 projections per second.

A lower bound of the estimated processing performance would be:

224 samples� 30 instructions� 30 frames=sec

or about 15 billion (15�109) instructions per second. To access the 16 MByte

dataset 30 times per second requires 30� 224 or about 500 MBytes/sec band-

width between processor and memory. Rendering a high-resolution dataset of

5123 16-bit voxels at 30 Hz, for example, requires 256 MBytes of storage, a

memory transfer rate of 7.6 GBytes per second, and approximately 120 billion

instructions per second. These requirements are several orders of magnitude

beyond the capabilities of existing conventional machines.

These estimations are based on conservative assumptions. As we will show

in Chapter 4, typical volume rendering algorithms access each voxel multiple
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times per projection. For example, tri-linear interpolation requires to access

eight voxels for each interpolated sample. Furthermore, 30 instructions per

sample are not enough for an algorithm that tries to achieve acceptable image

quality.

2.6 Acceleration Techniques

Given these performance requirements it becomes clear that a brute-force

software implementation of volume rendering requires an excessive amount

of processing. It is therefore not surprising that many high-level algorithmic

optimizations and data structures have been developed to speed up algorithm

execution.

Coherence Optimization

The most powerful acceleration technique is to avoid computations in trans-

parent regions of the volume data. This is commonly referred to as coherence

optimization. A user-de�ned classi�cation function encodes non-transparent

areas of the data into hierarchical [Mea82, Lev90, DH92, SF90b] or run-length

encoded [RGC87, LL94] data structures.

A drawback of hierarchical data structures is that they must be accessed

several times per projection, leading to multiple traversals and to redundant

computation. Run-length encoding of the data leads to more regular data

access and provides lossless data compression. The resulting data reduction

and regular object-order data access is used in current implementations of

shear-warp algorithms, which store three copies of the run-length encoded

dataset, one for each major viewing direction.

An inherent problem of coherence optimization is that the performance is
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data- and classi�cation-dependent. Published performance results are typi-

cally achieved with an almost iso-surface like classi�cation, where only 5% of

the voxels are non-transparent [LL94]. Mostly transparent data or datasets

with a wide range of values, such as temperature distributions, lead to much

degraded performance.

Furthermore, any change of the data or the classi�cation function re-

quires a time consuming pre-processing step to recompute the coherence data

structures (over 70 seconds for shear-warp rendering [LL94]). However, pre-

processing inhibits data classi�cation with immediate visual feedback, one of

our project goals for interactive volume rendering. Furthermore, it does not

allow for 4D visualization with direct data input.

Space-Leaping

Empty regions of the volume data may be skipped using pre-computed spatial

data structures. In contrast to coherence optimization, the skipping of empty

space does not have to take the opacity classi�cation of the data into account.

Levoy [Lev90] uses an octree data structure to skip empty subvolumes of the

data during ray-casting. A bounding box around relevant information in the

volume data allows to reduce computation by clipping the rays against the

bounding box. Avila et al. [ASK92] use convex polyhedral shapes as bounding

volumes and available graphics hardware to e�ciently handle ray clipping.

The proximity cloud method [Sra94, ZKV92] pre-computes a distance func-

tion to indicate the radial distance from each voxel in the data to the closest

voxel above a certain threshold. The result is stored as a distance volume

that can be used during ray-casting. If a ray encounters a proximity voxel

containing value l it can safely take an l-step leap forward without missing
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small features of the data. Yagel et al. [YCK92] use a fast discrete line al-

gorithm (e.g., an integer based 26-connected discrete line algorithm) in the

empty space and a slower but more accurate line traversal (e.g., a 6-connected

oating point continuous line algorithm) in the vicinity and interior of objects.

Although empty space skipping is a powerful technique, it requires a pre-

processing step. The achievable speedup is data dependent. However, space-

leaping is preferable over coherence optimization because it is independent of

data classi�cation.

Early Ray Termination

Early ray termination is a widely used method to speed up ray-casting [Lev90,

AK90, DH92]. The accumulation of new samples along a ray is terminated

as soon as their contribution towards the currently computed pixel becomes

minimal. Typically, the ray is terminated as soon as the accumulated ray

opacity reaches a certain threshold since any further samples along the ray

would be occluded. Using this technique, Levoy reports a two-fold speedup

for ray-casting of medical datasets [Lev90]. More general methods terminate

rays according to a probability that increases with increasing accumulated ray

opacity [AK90, DH92], or decrease the sampling rate as the optical distance

to the viewer increases [DH92].

Reynolds et al. [RGC87] and Lacroute and Levoy [LL94] use early ray

termination in object-order shear-warp algorithms. They observe that trans-

formed and resampled object space voxel scanlines line up with pixel scanlines

of the rotated image. Each voxel and image scanline is traversed simultane-

ously, and samples are accumulated onto corresponding pixels. The run-length

encoding of voxel and pixel scanlines allows to skip empty voxels and occluded

pixels. A warp of the 2D image results in the �nal projection.
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However, similar to coherence optimizations, early ray termination only

proves e�ective for classi�cation functions that yield high opacity values

throughout the data. The performance is dataset and classi�cation depen-

dent. The opacity and run-length encoding of the volume in object-order

shear-warp algorithms requires a time consuming pre-processing step.

Pre-calculation of View-Independent Data

Pre-calculation of view-independent data is a general technique that is widely

used by most acceleration methods. View independent attributes, such as data

classi�cation, normals, colors, or other shading information, are evaluated at

the grid points of the volume in a pre-processing step. The pre-computed

values are interpolated during rendering to obtain values at the non-integer

sample positions.

Although substantial speedups can be achieved using pre-computed data,

the storage overhead per voxel is signi�cant. Typically, the additional data

increases the storage requirements by a factor of three to four of the original

volume data. This overhead becomes prohibitive for high resolution datasets.

A more fundamental problem is that classi�cation and shading are in general

non-linear operations. Interpolation of the pre-computed values to non-integer

points degrades the achievable image quality when compared to the evaluation

of the non-linear functions at the sample locations [Neu93b, Ben95]. Further-

more, pre-classi�ed data does not allow for interactive classi�cation, and pre-

shaded data does not allow for changes of highlights when the observer moves.

Finally, the pre-processing inhibits the visualization of dynamically changing

data.
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Subsampling

Some volume rendering acceleration techniques trade o� image quality for

speed. Most of these techniques use a variation of subsampling, which avoids

excessive computation by calculating less samples in areas of low data variance.

In image-order algorithms subsampling is easily achieved by casting less

rays from the image plane, calculating less samples along each ray, or by lower

cuto� thresholds for accumulated opacity and early ray termination. Levoy

[Lev90] uses a technique called adaptive sampling during ray-casting, where

rays are cast only for a subset of screen pixels. If the variance of neighboring

samples is above a certain threshold, more rays are cast by recursive subdivi-

sion of these screen regions. Pixels in low variance areas are interpolated from

neighboring sampled pixels.

Danskin and Hanrahan [DH92] use a technique called �-acceleration for

ray-casting, which lowers the sampling rate in areas where the volume is ho-

mogeneous. They also provide error bounds to control the error of the resulting

image. Information about regions of low variation is pre-computed and stored

in an octree data structure. Adaptive sampling in combination with error

bounds have also been used in object-order algorithms. Hierarchical splatting

[LH91] uses a pyramidal data structure to store average opacity values as well

as estimated error bounds. When large errors are acceptable, rendering is

performed at coarser resolution levels of the pyramid.

Subsampling potentially misses or blurs small features of the data, which

is in general not acceptable for scienti�c visualization. However, subsampling

proves to be a powerful method for rapid image generation in combination with

progressive re�nement [BFGS86]. A crude image is rendered while the user

changes viewing parameters, and progressively better images are computed as

soon as the user interaction stops.
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2.7 Summary

This chapter introduced the background information on volume rendering and

several di�erent volume rendering algorithms. The algorithm that o�ers the

highest image quality and the biggest opportunity for algorithmic acceleration

is ray-casting. The main drawback of image-order algorithms are the non-

regular and viewing angle dependent accesses to the volume data.

We have shown that a brute-force sequential implementation of volume

rendering exceeds the processing capabilities of current conventional systems,

even for small datasets. Our project goals, the real-time rendering of high-

resolution datasets, lead to processing requirements that are several orders of

magnitude beyond the capabilities of current general-purpose systems.

We have described the main acceleration techniques that are commonly

used in software implementations of volume rendering. However, all of these

software acceleration techniques require pre-computation, additional data stor-

age, or trade o� image quality for speed. This is in direct conict with our

project goals. To provide direct data input from acquisition devices does not

allow for pre-processing. Furthermore, data duplication is prohibitive for real-

time rendering of high-resolution datasets.

Throughout this chapter we have also seen that current shear-warp al-

gorithms use 2D resampling of the dataset and combine many acceleration

techniques that require time consuming pre-processing and data duplication.

However, shear-warp rendering leads to the currently fastest software imple-

mentation of volume rendering, mainly due to the regular, object-order data

access. In Chapter 6 we describe a parallel memory system that supports

object-order access to scanlines of voxel data from any major viewing direc-

tion. We present three parallel ray-casting algorithms that use this memory
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organization to e�ciently stream through the data in object-order. In contrast

to object-order volume rendering, we combine this high-bandwidth data access

with an image-order, fully pipelined ray-casting algorithm, which is described

in Chapter 5.

In the following chapter, we review the most relevant previous work in

interactive or real-time volume rendering. We will see that none of the current

systems satis�es all of our project goals.



Chapter 3

Related Work

In this chapter we survey the most relevant previous work that tries to achieve

real-time frame rates for volume rendering. We also describe the Cube project

at SUNY Stony Brook, which provided the framework for this research.

3.1 General-Purpose Supercomputers

Many researchers have implemented volume rendering algorithms on large

general-purpose multiprocessors. Advantages of this approach are the ex-

ible programming environment and the ability to integrate simulation and

visualization on the same machine. Large-scale parallelism on Single In-

struction Multiple Data (SIMD) computers [Fly72] has typically been used

for parallel implementations of volume rendering [CU92, Hsu93]. More re-

cent parallel volume rendering algorithms seem to favor Multiple Instruc-

tion Multiple Data (MIMD) machines with shared or distributed memory

[CM93, MPHK93, MPS92, Neu93a].

The state-of-the-art in volume rendering performance on general-purpose

28
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supercomputers is in the range of one to 10 frames per second for low-resolution

datasets [NL92, MPHK94, VFR92]. One of the best performances has been

achieved by a parallel implementation of the shear-warp algorithm [Lac95b].

Parallel color projections of 2563 datasets can be generated at 5 frames per

second on a 16-processor MIMD shared-memory SGI Challenge

A fundamental problem of general-purpose multiprocessors is that it re-

quires expensive machines to achieve acceptable frame rates. Due to their high

cost, these machines are shared by many users, typically through network con-

nections. Sharing and partitioning of the machine among several users further

limits their performance. Furthermore, the lack of direct frame bu�er access

prohibits real-time output rates. It seems infeasible that our project goals

could be achieved on the current generation of parallel supercomputers.

3.2 Graphics Accelerators

Several researchers have implemented volume rendering algorithms on special-

purpose graphics systems. These high-performance accelerators are typically

used as external graphics engines to o�oad graphics computations from a

general-purpose host computer. The machines in this class contain high-speed

hardware implementations of what is known as the pipeline of raster graphics

rendering [FvDFH90]. This pipeline can be divided into geometry operations

and scan-conversion or rasterization of the geometric primitives.

Most of the machines in the following survey are experimental high-

performance systems that were never commercially available. We include them

because of their important contribution towards fast volume rendering. How-

ever, the following selection of machines is not comprehensive, and it merely

serves to outline the historic development of volume rendering applications on
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special-purpose graphics machines.

3.2.1 The PIXAR and PIXAR II Image Computer

The PIXAR machines were designed in 1984 to meet the requirements of image

generation for motion picture special e�ects and animation. All computation

as well as ow-control of pixels is performed by channel processors (Chaps). A

Chap is a microcoded parallel vector processor, operating in a SIMD fashion

by executing each instruction on four operands simultaneously [LP84]. The

PIXAR Image Computer has one to three Chaps and 24 to 192 MBytes of

image memory. PIXAR II can contain one or two Chaps and up to 128 MBytes

of image memory.

Drebin et al. [DCH88] successfully implemented volume shearing with

multipass resampling on the PIXAR machine. The object-order scanline ap-

proach leads to regular communication patterns that are well suited for the

SIMD vector processors. The time to render a volumetric dataset depends

on the number of pre-processed auxiliary opacity and color volumes. It varies

from a few minutes to one hour for a 2563 dataset.

3.2.2 AT&T Pixel Machine 900

The Pixel Machine 900 was completed in 1989 by AT&T Bell Laboratories.

The machine incorporates two forms of parallelism: a coarse-grain operating

geometry pipeline and a �ne-grain parallel array of pixel nodes. The frame

bu�er is distributed among the array of pixel nodes, and pixels are interleaved

into the processor array.

Volume rendering has been implemented on the architecture using the ray-

casting algorithm. A Pixel Machine with 18 geometry pipelines, 64 pixel nodes,
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and a 32 MBytes distributed frame bu�er renders a 256 � 256 � 60 volume

dataset in 10 seconds [SF91].

3.2.3 The Princeton Engine

The Princeton engine is a SIMD real-time video system simulator [CPB+88].

It uses a linear array of up to 2048 processors. Each processor contains a

16-bit ALU, a 64-bit register set, a 16-bit communication port, and up to 320

kBytes of memory. The processors are interconnected with a 16-bit bus that

supports left/right circular shifts and broadcast of data.

Kaba et al. [KMS+92] implemented volume shearing using multi-pass re-

sampling for terrain data. The volume data is mapped onto the hardware

with the X axis corresponding to the linear processor array and YZ slices of

data stored in every processor. Projections of a 2563 dataset are performed

at 4 frames per second using 1024 processors. Schr�oder and Stoll use a 1024

processor Princeton Engine to achieve 30 frames per second for 1283 datasets

[SS92]. The algorithm assigns a column of voxel data to each processor. Using

a lookup-table based ray-casting technique [YK92], partially �nished results

of each ray are communicated using nearest-neighbor shifts.

3.2.4 Pixel-Planes 5

Pixel-Planes 5 is a heterogeneous multiprocessor architecture for graphics us-

ing both MIMD and SIMD parallelism [FPE+89]. The global system structure

is shown in Figure 9. Several graphics processors and renderers are connected

to a high-speed ring network and a conventional frame bu�er. The graph-

ics processor are MIMD geometry engines and perform display-list traversal,

clipping, and lighting calculations. The renderers use custom built enhanced
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Figure 9: Pixel-Planes 5 Architecture.

memory chips, upgraded from the Pixel-Planes 4 system [FP81]. Each en-

hanced memory ASIC contains a 2D array of 1282 one-bit ALUs for arithmetic

and logical operations at each pixel, taking the parallel rasterization organi-

zation to the extreme. The renderer implements many other features such as

shadows, textures, transparencies and anti-aliasing [FGH+85]. The processors

and the frame bu�er are connected by a token ring network that can support

a total bandwidth of 640 MBytes/sec.

Several volume rendering algorithms, such as ray-casting and splatting,

were implemented on Pixel-Planes 5 [YNF+92]. A machine with 20 graphics

processors and eight renderers is capable of rendering 128� 128� 56 datasets

at 20 frames per second, and 192�192�128 datasets at 11 frames per second.

However, measurements on Pixel-Planes 5 showed that the bandwidth of the

ring network limits the performance and scalability of the system [MEP92].
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3.2.5 PixelFlow

PixelFlow is currently under development at the University of North Car-

olina at Chapel Hill [MEP92]. PixelFlow departs from the conventional raster

graphics rendering paradigm and explores a form of parallelism called image

composition. Geometric primitives are assigned to di�erent renderers. The

images of all renderers are then composed over a composition network. The

advantages of image composition are linear scalability of performance with

increasing number of renderers. The disadvantages are the high bandwidth

requirements on the composition network, since every pixel must be trans-

ferred multiple times for every frame.

Figure 10 shows an overview of the proposed PixelFlow system. There are
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Figure 10: The PixelFlow Architecture.

three di�erent types of boards in PixelFlow. Renderers contain an i860XP

general purpose processor as geometry engine which is connected to a 1282

SIMD array of enhanced image memory. The enhanced memory cells are simi-

lar to the ones in Pixel-Planes 5 and are mainly used for rasterization. Shaders
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are similar to the renderers, with the addition of a texture memory that can be

mapped onto the SIMD image memory array [DWS88]. Frame bu�er boards

contain a double-bu�ered Video RAM frame bu�er. Composition of images is

performed over the composition network, a 256-bit wide pipelined bus operat-

ing at 132 MHz for a net bandwidth of 4 GBytes/sec.

Cullip et al. [CN93] propose to use the texture mapping hardware of Pix-

elFlow for volume rendering using planar texture resampling, a technique pre-

sented in the next section. Preliminary calculations estimate the performance

for 2563 datasets of a 43 processor card PixelFlow system at over 10 frames

per second.

3.2.6 SGI Reality Engine

The SGI Reality Engine supports texture mapping of polygonal scenes through

3D texture memory on one or more Raster Manager boards. Each Raster

Manager contains up to 16 MBytes of texture memory. Higher performance

is achieved through the use of multiple Raster Managers with their own inde-

pendent copy of texture data.

Texture mapping hardware can be used for volume rendering applying a

method called planar texture resampling [CN93, HCN94]. The resampling

locations inside the volume are constrained to lie in planes aligned with the

image-space or object-space axis (see Figure 11). Textured polygons are used

to resample the volume by evaluating textures for each sample plane at the

locations that project to a pixel. Sample planes aligned in image space must be

clipped to the boundaries of the volume to ensure valid texture coordinates.

Clipping of sample planes aligned in object space is not necessary, but the

sampling rate along rays varies for each pixel due to the perspective divergence

of rays and the viewing angle dependence of sample planes. The resulting
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Figure 11: Planar Texture Resampling.

texture images are combined using compositing or weighted summation.

Hemminger et. al [HCN94] report a series of results on a Reality Engine 2

with one or two Raster Managers. The best result was achieved when rendering

a 256� 256� 32 volume at 12 frames per second. Cabral et al. [CCF94] use a

four Raster Manager Reality Engine Onyx to render a 512� 512� 64 dataset

at 10 frames per second.

However, the SGI Reality Engine hardware is expensive and does not sup-

port estimation of surface normals that are required for high-quality shading

or classi�cation. Furthermore, each Raster Manager contains an independent

texture unit with no provisions for communication to other Raster Manager

boards. This leads to data duplication in texture memory and makes the

hardware not scalable in performance.
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Machine Year Performance Algorithm

Pixar 1984 2563, > 60 s/fr volume shearing

Pixel Machine 1989 256� 256� 60, 10 s/fr ray-casting

Princeton Engine 1992 2563, 4 fr/sec volume shearing

1283, 30 fr/sec

Pixel-Planes 5 1992 128� 128� 56, 20 fr/sec ray-casting

192� 192� 128, 11 fr/sec

PixelFlow 1993 2563, > 10 fr/sec planar texture

(estimated) resampling

SGI Reality Engine 1994 256� 256� 32, 12 fr/sec planar texture

512� 512� 64, 10 fr/sec resampling

Table 1: Comparison of Graphics Accelerators.

3.2.7 Comparison

Table 1 outlines the historic development of the use of graphics accelerators

for volume rendering. Machines built before 1993 are not able to render small

size datasets of 2563 voxels at interactive rates. They contain parallel imple-

mentations of the traditional graphics pipeline, where most of the hardware

resources are spent on video processing or polygon rasterization. This high

degree of specialization makes them not well suited for direct volume render-

ing applications. Furthermore, their cost and size does not allow to integrate

them into desktop or deskside systems.

More recently, the use of texture mapping hardware holds great promise

to achieve interactive rates for volume rendering. Newly developed machines,

such as the SGI Reality Engine and PixelFlow, dedicate large resources to

texturing hardware, which is likely to become a common feature of graphics

systems in the future. Market economics dictate that an expensive resource

such as texture memory is used for more than just texturing polygons. Volume



CHAPTER 3. RELATED WORK 37

rendering seems to be an application that naturally �ts into the framework of

3D texture hardware.

But the application of current texture hardware to volume rendering su�ers

from several limitations. The texture memory does not allow to calculate gra-

dients for directional shading of the samples. The view-dependent sampling of

the volume on planes aligned in object-space leads to motion aliasing. Addi-

tional image artifacts may be introduced through scaling of values to prevent

arithmetic overows in the texture hardware. Furthermore, high-resolution

datasets do not �t into the texture memory, which is currently limited to

16 MBytes. One solution is to partition larger datasets into smaller pieces.

However, the limited texture memory bandwidth inhibits fast reloading of the

partitioned data, which makes interactive viewing of larger datasets impossi-

ble. The only approach to higher performance is the addition of more texturing

boards (Raster Managers in the Reality Engine or Shaders in PixelFlow) with

duplication of the volume dataset in each of them. But data duplication be-

comes infeasible for higher resolution datasets, and it limits the scalability of

the approach. Finally, current texture hardware has no provision for real-time

data input from acquisition devices.

The application of texture hardware to volume rendering is still in its in-

fancy. In lack of better solutions, planar texture resampling is a valid approach

for fast, low quality volume rendering of low-resolution datasets. However, we

believe that the development of special-purpose volume rendering hardware

may inuence the design of next generation texturing systems. The lessons

learned from the development of hardware for high-quality real-time volume

rendering should be easily applicable to other applications that require large

3D discrete data storage. In Chapter 10 we show that the contributions of
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this dissertation successfully address the shortcomings of current texture sys-

tems. This may lead to the development of high-performance texture hardware

that integrates volume rendering and polygonal texturing more naturally than

current solutions.

3.3 Volume Rendering Accelerators

The best volume rendering performance on large general-purpose supercom-

puters or special-purpose texture mapping hardware is below 10 frames/sec for

2563 volumes. Furthermore, almost all of the software based methods on par-

allel machines use several of the acceleration methods discussed in Chapter 2,

requiring pre-processing, additional storage of auxiliary data, and a trade-o�

between image quality and speed. In view of the limitations of software based

methods, it is no surprise that several researchers have undertaken the devel-

opment of special-purpose volume rendering hardware [Kau91, SF91, SFF91].

3.3.1 The PARCUM System

The PARCUM system (Processing ARchitecture based on CUbic Memory)

has been developed by Jackel [Jac85] at the Technical University of Berlin.

The core of the system is a specially organized 3D memory called the Memory

Cube. Figure 12 gives an overview of the system. PARCUM has been designed

for 5123 datasets. The memory cube allows to simultaneously read and write

so-called Macro Volume Elements (MVEs) consisting of 64 (43) voxels [JS88].

The memory is physically divided into 64 memory modules with a capacity of 2

MBytes each. Every voxel of a MVE is assigned to a di�erent memory module

in an interleaved fashion in order to access all 64 voxels of an MVE in parallel.

Because of the interleaving scheme, voxels at the output of the memory have
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Figure 12: PARCUM System Architecture.

to be aligned to their correct position inside a data word. This alignment

is performed with cyclic shift operations using network interconnected barrel

shifters [Jac88].

The Object Generator generates volume objects inside the memory cube.

This volume data is projected using parallel ray-casting. A reference path

inside the plane of parallel rays is computed by the Address Generator. Macro

voxels are accessed along the reference path. The sequence of macro voxels is

processed inside the MVE Selector. The MVE selector selects visible surface

voxels inside each MVE using a process called voxel reduction [JS88]. The

surface voxels are projected onto a user-speci�ed projection plane inside the

Address Convertor. Each voxel is transformed by the viewing matrix and then

projected onto a Z-bu�er [DCH88]. The depth information of the projected

voxels is used for image-based shading inside an Illumination Processor.

A hardware implementation of a 5123 PARCUM memory system has been

completed while the other parts of the architecture have been emulated on a

MC68020 micro-processor. This experimental system generates an image of
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5123 datasets in about one minute and of 2563 datasets in about 40 seconds.

3.3.2 The Voxel Processor

The Voxel Processor architecture, introduced by Goldwasser and Reynolds

[GR83, Gol84] and conceptually shown in Figure 13, uses an octant-wise re-

cursive subdivision of object space and a hierarchical tree of both rendering

and display processors. Each subcube of volume data is assigned to a render-
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Figure 13: Voxel Processor Architecture.

ing processor in the �rst level of the processor tree. Processors render their

subcubes by traversing them in back-to-front order. The subsequent image

processing stages merge the subcube renderings in back-to-front order into the

�nal image.

The Voxel Processor was designed for 2563 datasets. The volume data is

stored on a host computer that manages the object database. A rich software
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environment on the host enables direct editing, thresholding, and segmentation

of volume data [GRB+85]. The host subdivides the data into 643 subcubes

and distributes them to 64 rendering processors over the memory bus. The

processors independently render their subcubes by traversing them in back-

to-front order and mapping each voxel onto image space using the 3D painters

algorithm [FGR85].

The resulting 1282 images contain the visible voxel values and their image

space z-values. The renderers place their images in local frame bu�ers for

use by the eight image processors, which combine eight input images to one

2562 image. The eight 2562 images are merged to the �nal 5122 picture by

the output processor. Once the image is in the frame bu�er, a post-processor

performs simple image-space shading [GR85] and pseudo-coloring. The entire

rendering process is pipelined and uses double-bu�ering at each stage, so that

at any time four frames are processed in the machine.

A small prototype operating on 643 4-bit voxels has been implemented and

incorporated into a Physician's workstation [GRB+85]. The predicted speed

for 2563 volumes is 25 frames/sec, but the �nal machine was never built [SF91].

3.3.3 The Cube Project

We are conducting our research as part of the Cube project for hardware

accelerated volume visualization at the State University of New York at Stony

Brook. The Cube project pioneered several hardware architectures for volume

rendering as well as a host of algorithms and software systems.

Cube-1, a �rst generation hardware prototype, is based on a specially or-

ganized Cubic Frame Bu�er (CFB) [KB88], which has also been used in all

subsequent generations of the Cube architecture. It uses a simple linear mem-

ory skewing that we discuss in Chapter 7. The skewed memory allows for
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simultaneous access to all voxels of a beam, which is a ray parallel to a main

axis of the dataset.

Cube-1 allows for orthonormal projections of the data using a multiple-

write bus (VMWB) [GL82] which locates the �rst opaque voxel along beams.

Successive beams of voxels most parallel to the viewing direction are placed

into the processing units of the VMWB. A bit-wise comparison of the depth

index of each voxel determines the voxel that is closest to the observer. Depth

clipping of beams is performed by a similar mechanism. The projection time

is proportional to logn for beams of length n. Shading is performed on the

depth and value of the projected voxels by the lookup-table based congradient

shading method [CKBB90].

A fully operational hardware prototype of Cube-1 consists of 16 boards

and con�rms the feasibility of the skewed memory scheme. Cube-1 is capable

of generating orthonormal projections for 163 datasets [KB88]. Cube-2 is a

single-chip VLSI implementation of this prototype. A 14,000 transistor Cube-

2 chip has been fabricated.

A di�erent approach is taken in the Flipping Cube architecture [Yag91b].

E�cient access to the volume data requires a reorganization of the volume

memory after a change of the major viewing direction through shearing or

so-called ip operations. Only two ips are necessary to change the major

axis of the volume. One of them can be implemented by an address mapping

mechanism, and the second one by means of shear operations on a barrel

shifter. The orthonormal projection and shading mechanisms are the same

as for Cube-1. The estimated time for ipping a 5123 volume by 90o is 0.5

seconds.

To allow for arbitrary parallel projections, an extension to Cube-1 has

been proposed by Bakalash et al. [BKPP92]. An arbitrary plane of parallel
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projection rays is accessed beam by beam from the memory system. The

memory modules are connected to the processors by the so-called conveyor,

a modi�ed barrel shifter based on crossbar switches [CB92]. The conveyor is

able to shift an entire beam of voxels by m places in one shift cycle. Shifted

beams are then stored in a 2D skewed memory, where columns and rows can

be read and written conict free [KBC91]. From there the viewing rays are

read and aligned by a second conveyor that shifts the voxels to the nodes of

a tree of projection units. This extended Cube-1 architecture has a predicted

performance of 16 frames/sec for 5123 datasets using 512 processors [BKPP92].

3.3.4 VOGUE

VOGUE (previously called VERVE [Kni93]) is a compact and scalable image

order ray-casting unit which provides interactive rendering speed at moder-

ate hardware costs [KS94, Kni94]. The basic unit consists of the interleaved

volume memory and four VLSI chips as shown in Figure 14. It provides arbi-

trary perspective projections (e.g., for walk-throughs), Phong shading, a freely

movable point light source, depth-cueing, and non-binary classi�cation using

both opacity and color transfer functions. After having obtained all ray pa-

rameters from the host, the address generator sequentially generates all ray

points. For each of them, up to seven sets of eight addresses are passed to the

memory system. The volume memory, which has a maximum capacity of 256

MBytes for 5123 16-bit voxels, consists of eight independent memory banks

and delivers eight voxels per access. The interpolator and gradient estimator

performs the tri-linear reconstruction and computes the gradient and gradient

magnitude. Sample value and gradient magnitude then address several lookup

tables to yield the shading parameters (color and specular coe�cient) and the
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Figure 14: VOGUE Architecture.

sample opacity. A Phong shader implements the unrestricted Phong illumina-

tion model (non-parallel light, perspective projection) for a single point light

source, and performs depth-cueing. The compositing unit sums up the inten-

sities of all points on a ray and passes the pixel color to the frame-bu�er.

Real-time performance can be achieved by multiple parallel units. The

dataset is divided into subvolumes that are distributed across di�erent units.

Each unit processes a given ray as long as it traverses through its own sub-

volume. On exit, the properties de�ning the ray at this point are sent to

the neighboring unit. Up to eight units can be connected by a bus with a

bandwidth of 640 MBytes/sec. 64 units, organized in a 4 � 4 � 4 mesh, re-

quire a ring-connected cubic network with a total transfer rate of about 5.2

GBytes/sec.

Estimated performance of one VOGUE module is 2.5 frames/sec for 2563
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datasets using the fastest rendering mode with lower-quality gradient estima-

tion. Near real-time rates of 20 frames/sec can be achieved using eight modules

for 2563 datasets and 64 modules for 5123 datasets. Higher quality gradient

estimation slows this performance down to 2 frames/sec [HMK+95].

3.3.5 VIRIM

VIRIM is an object-order volume rendering engine currently being assembled

and tested at the University of Mannheim [GPR+94]. The hardware of VIRIM

is organized into modules with four double-height VME boards. Each modules

contains a geometry unit for volume rotation and resampling, and a ray-casting

unit for the �nal image generation (see Figure 15). One geometry unit can

LUT
Weight

Address
Generator

Density Lookup Tables

8-way Interleaved Memory

Bus  (48 bits @ 40 MHz, 240 MB/s)

Processor
Master

Processor
Master

DSP Rendering Proc’s DSP Rendering Proc’s

Host

Ray-Casting
Unit

Interpolation 
X/Y Gradient Processor

Density Y-GradientX-Gradient

Geometry Unit

Figure 15: VIRIM Architecture.

generate 26 to 36 million transformed locations per second using 3D resam-

pling. The maximum dataset size for 16-bit voxels is 2563 for the currently
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used 4 Mbit DRAMs, and 512 � 512 � 256 voxels for 16 Mbit DRAMs. A

dedicated 8-way interleaved memory system inside each geometry unit allows

conict-free data access to eight voxels. The maximum read-out rate is 640

MBytes/sec using commercial DRAMs.

Rotation of the dataset is performed by weighted interpolation among the

eight voxel neighbors around the resampling location. Before interpolation,

the voxel values are mapped onto density values using a density lookup table

(LUT). Address generation hardware generates the positions of the sampling

points. The interpolation weights are pre-calculated and stored in lookup

tables. Di�erent interpolation �lters like tri-linear interpolation or Gaussian

�lters can be used in order to improve the resampling quality. Only the X- and

Y-component of the gradient are estimated using a 2D Sobel gradient operator.

The sample density and the X- and Y-gradient values are transmitted from

the geometry unit to the ray-casting unit over a bus with a peak transfer rate

of 240 MBytes/sec.

Using the sample and gradient values of the rotated dataset, the ray-casting

unit generates the �nal image. In order to allow maximum exibility, VIRIM

uses programmable digital signal processors (DSPs). The VIRIM system im-

plements the Heidelberg ray-tracing algorithm [MMSE91], which allows for

shadowing using two light sources at 00 and 450 with respect to the viewing

direction. The DSPs compute the interaction of light and material for each

sample. One or more scanlines of the resulting projection are calculated per

DSP and stored in local memory. A local master processor on the ray-casting

board collects all scan lines of the �nal image from the DSP memories and

transfers the results to the host system.

One VIRIM module with four boards achieves 2.5 Hz frame rates for 256�
256 � 128 datasets. Four modules (16 boards) achieve 10 Hz for the same
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Machine Year Performance Algorithm

PARCUM 1985 5123, 60 sec/fr �rst opaque

Voxel Processor 1985 2563, 25 fr/sec �rst opaque

Cube 1986 5123, 16 fr/sec �rst opaque

VOGUE 1993 2563, 2.5 fr/sec ray-casting

VIRIM 1994 256� 256� 128, 2.5 fr/sec ray-casting

Table 2: Comparison of Volume Rendering Accelerators.

dataset size, and eight modules (32 boards) achieve 10 Hz for 2563 datasets

[HMK+95].

3.3.6 Comparison

Table 2 lists the rendering performances and the projection algorithms of the

volume rendering accelerators that have been presented in this chapter. There

is a striking performance gap between older designs, that use �rst opaque pro-

jection, and the more recent ray-casting architectures. The higher performance

of early machines can be explained by the simple rendering and shading meth-

ods that were common at the time. Projection was reduced to the problem of

displaying the front-most opaque voxels. Zero-order point sampling was used

instead of more expensive resampling �lters. None of these assumptions are

valid anymore in current volume rendering applications. Consequently, the

performance numbers of architectures before and after 1993 in Table 2 should

not be compared.

Table 3 shows a more conclusive comparison of the memory, processor,

and communication hardware that is used by the di�erent architectures. All

architectures use a form of memory interleaving in order to increase the data

throughput. We discuss the issues of memory organization in Chapter 6. The
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Machine Memory Processors Memory-Processor

Organization Connection

PARCUM 64-way 5 processors network connected

interleaved barrel shifters

Voxel Processor on host 64 renderers memory bus

9 image proc.

Cube-1 skewed 512 processors barrel shifters

VOGUE 8-way 4 ASICs ring-connected

interleaved per board cubic network

VIRIM 8-way 4 boards global bus

interleaved with 32 DSPs

Table 3: Volume Rendering Accelerator Hardware.

amount of hardware required by the di�erent machines varies according to per-

formance levels. At both ends of the scale are Cube-1, with high-performance

massive parallelism (512 processors), and VOGUE, with a low-performance

compact implementation (4 ASICs). The right-most column of Table 3 shows

how the volume memory and the parallel processors are connected. In general,

all architectures use a global communication network between memory mod-

ules and processors. We discuss the issues related to the global communication

of voxel data in Chapter 6.

3.4 Summary

General-purpose parallel supercomputers o�er a exible programming environ-

ment and the integration of simulation and visualization on the same machine.

However, inter-processor communication and I/O are still major bottlenecks
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and severely limit volume rendering performance. To achieve acceptable per-

formance requires the combination of many software acceleration techniques

using pre-computation, data duplication, and lower image quality. The biggest

problem is that supercomputers are very expensive { few people have them.

The machines are typically accessible only over (slow) network connections.

Sharing of the machine with other users and the lack of distributed frame-

bu�ers further inhibit real-time performance. Our research ultimately aims

at providing real-time volume rendering performance on the desktop at an

a�ordable price.

Special-purpose graphics architectures can be roughly divided into systems

that dedicate most of their resources to video or polygon processing, such as the

Princeton Engine and Pixel-Planes 5, and systems that contain large amounts

of texture memory, such as PixelFlow and the SGI Reality Engine. The �rst

class of machines implements the traditional graphics or video pipeline in

hardware, which has only limited value for the visualization of volumetric

datasets. Consequently, the volume rendering performance of these systems is

very low compared to the size and the price of the hardware.

Texture memory o�ers a more natural integration of discrete 3D datasets

into traditional graphics accelerators. The availability of texture systems is

increasing with the advent of 3D graphics in PC systems. However, current

texture systems do not fully address the needs of volume rendering appli-

cations. The lack of gradient estimation and directional shading prohibits

high-quality rendering. Higher-resolution datasets have to be partitioned, and

each smaller subset is subsequently being rendered. The slow texture down-

load rates prohibit fast rendering times for these datasets. Most importantly,

current texture memory approaches are not scalable, and they require the

duplication of the dataset in each texture sub-system.
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Early on, the high data storage and communication requirements of volume

rendering have led to the development of special-purpose volume rendering ac-

celerators. Systems that were developed before 1993 use simpli�ed resampling

and projection methods that are not acceptable in current volume visualiza-

tion applications. The more current approaches, VOGUE and VIRIM, use

ray-casting and image- or object-order traversal of the dataset, respectively.

However, none of the architectures achieves real-time frame rates at an accept-

able hardware cost. Furthermore, none of the approaches is scalable. They

either require duplication of the dataset at each processing node or large, global

interprocessor communication networks.

The main result of this dissertation is Cube-4, a special-purpose volume

rendering architecture that implements high-quality ray-casting. Cube-4 leads

to a modular implementation with linear scalability of performance. The cost-

performance ratio of Cube-4 surpasses the state-of-the-art on supercomputers,

special-purpose graphics systems, and on other special-purpose volume ren-

dering systems.

In the following chapter we discuss the basic ray-casting algorithm and

identify its performance bottlenecks. And in Chapter 5 we present several al-

gorithmic modi�cations that lead to an e�cient implementation of ray-casting

in hardware.



Chapter 4

The Ray-Casting Algorithm

As we have seen in Chapter 2, image-order ray-casting o�ers high image quality

and a simple implementation in software. However, it su�ers from computa-

tional expenses due to the arbitrary accesses to the dataset. In this chapter

we look in detail at the basic ray-casting algorithm and carefully identify its

performance bottlenecks. In the next chapter we present modi�cations of this

basic algorithm that eliminate the costly random and non-uniform accesses to

the volume memory.

The discussion in this chapter expose the following areas of improvement

that are at the focus of our attention throughout the remainder of this dis-

sertation: uniform data traversal, the use of coherency between samples of

neighboring rays, caching of intermediate results, and fully pipelined dataow.

Figure 16 shows the graphical conventions we use for the �gures in this

dissertation. We use squares to indicate voxels and solid lines along rays to

indicate resampling locations. The voxel neighborhood that is used for the

interpolation at the non-integer resampling location is called a cell, indicated

by thick lines. In the 2D drawing of Figure 16, a cell consists of four voxels.

51
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Figure 16: Graphical Conventions.

In 3D it may consist of eight or more voxels, depending on the support of the

interpolation �lter. The results of interpolation are called sample values or

samples and are indicated by a circle.

4.1 Ray-Casting Basics

The volume data is de�ned as a set of voxels on a 3D array of grid points.

In this dissertation, voxels are assumed to be the scalar values de�ned on the

grid points. This is in contrast to an alternative de�nition, where a voxel

is interpreted as a small unit cube of volume with a constant value. We

label the axes of the voxel array coordinate system as X, Y , and Z (see

Figure 17). These coordinates de�ne what is called object space. The image

space coordinate system is the coordinate system of the projected image. It

consists of the axes I and J of the image to be generated, also called the view-

plane. The image-space coordinate K indicates the depth from the image

towards the object. The coordinates (I; J) of the projected image are mapped
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Figure 17: Coordinate Systems.

onto display space coordinates (U; V ) by a display transformation that de�nes

viewport, window size, and position of the �nal image on the screen.

The program segment shown in Figure 18 outlines the basic ray-casting

operations. Rays are cast from each pixel of the view-plane into the volume

data. At locations along each ray a sample value and a surface normal approx-

imation are calculated using values of surrounding voxels. Using the sample

value and normal, a sample opacity is assigned and a local shading model is

applied. Finally, the ray samples along the ray are composited into a pixel

value for the �nal image [Lev88]. We now look at each of these steps in more

detail.

4.1.1 Data Traversal

The �rst step of the ray-casting algorithm is to generate addresses of resam-

pling locations along each ray. In general, this involves a coordinate transfor-

mation from image space to object space. The transformed resampling loca-

tions in object space are most likely not positioned on voxel locations, which

requires interpolation from surrounding voxels to estimate sample values at

non-integer positions.
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for i = 1 to imageWidth do

for j = 1 to imageHeight do

prevColor = backgroundColor;

for k = 1 to rayLength do

// Calculate next resampling location

rayPoint = TraverseData (viewingDirection);

// Access voxel data for interpolation

sample = InterpolateVoxelData (rayPoint);

// Access voxel data for normal approximation

normal = EstimateGradient (rayPoint);

// Shading can be arbitrarily complex

color = Shade (sample, normal, lightSources, : : : );

// Classification may only depend on Sample value

opacity = Classify (sample, normal, transferFct);

// Back-to-front or front-to-back

intensity = Composite (color, prevColor, opacity);

end for

DisplayPixel (intensity);

end for

end for

Figure 18: Basic Ray-Casting Routine.

4.1.2 Interpolation

Interpolation involves a convolution of voxel values with an interpolation �lter.

There is a wealth of literature that deals with the theory and application

of appropriate interpolation �lters in computer graphics [Gla95, Wol90] and

volume visualization [Neu93b, Ben95]. In practice, due to the prohibitive

computational cost of higher order �lters, the most commonly used �lters for

ray-casting are nearest neighbor interpolation and linear interpolation in three
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dimensions, also called tri-linear interpolation.

Suppose the relative 3D coordinate of a sample location within a cell with

respect to the corner voxel closest to the origin is ha; b; ci and the values of

corner voxels of the cell are Pijk, where i, j, k = 0 or 1. The interpolated data

value associated with the sample location, Pabc, is computed through tri-linear

interpolation as follows:

Pabc = P000 (1� a)(1� b)(1� c) + P100 a(1� b)(1� c) +

P010 (1� a)b(1� c) + P001 (1� a)(1� b)c +

P101 a(1� b)c + P011 (1� a)bc +

P111 abc + P110 ab(1� c):

4.1.3 Gradient Estimation

To approximate the surface normals necessary for shading and classi�cation

requires the computation of a gradient. Given a continuous function f(x; y; z),

the gradient rf is de�ned as the partial derivative of the function with respect

to all three coordinate directions:

rf(x; y; z) =
 
@f

@x
;
@f

@y
;
@f

@z

!
: (1)

Due to the sampled nature of volumetric data the computation of this con-

tinuous gradient has to be approximated using discrete gradient �lters. The

convolution of the input voxels with the �lter kernel yields one component

of the gradient vector. Most of these �lters are straight forward 3D exten-

sions of the corresponding two-dimensional edge detection operators, such as

the Prewitt, Laplacian, or Zucker-Hummel operators [ZH81]. As an example,

Equation 2 shows the �lter coe�cients for the Sobel operator [Sob95], one of
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the most widely used gradient �lters for volume rendering.

Gx =

2
66664
�2 0 2

�3 0 3

�2 0 2

3
77775

2
66664
�3 0 3

�6 0 6

�3 0 3

3
77775

2
66664
�2 0 2

�3 0 3

�2 0 2

3
77775 (2)

Gx is the 3 � 3 � 3 convolution kernel for the X-component of the gradient

vector. The convolution kernels for Gy and Gz can simply be obtained by

rotation and alignment with the positive Y and Z axes, respectively. An

analysis of several gradient �lters for volume rendering has been published by

Goss [Gos94] and Bentum [Ben95].

In practice, and due to computational considerations, most ray-casting

algorithms use the gray-level gradient, which is computed by local di�erences

between voxel or sample values in all three dimensions [HB86]. The gradient

at voxel position (x; y; z) is computed as follows:

rf(x; y; z) =

2
66664
rfx
rfy
rfz

3
77775 =

1

2

2
66664
f(x+ 1; y; z)� f(x� 1; y; z)

f(x; y + 1; z)� f(x; y � 1; z)

f(x; y; z + 1)� f(x; y; z � 1)

3
77775 : (3)

The factor 1
2
is often omitted, since the length of the gradient vector is nor-

malized before shading calculations.

4.1.4 Shading

Local illumination models use the basic vectors shown in Figure 19. The

equation to compute the reected intensity at each sample is:

I = Ia +
X
l

Ilkd(N � Ll) + Ilks(N �Rl)
s; (4)

where:
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Figure 19: Vectors for Local Illumination Models.

I is the reected intensity by the sample from the light source towards the

viewer. I is used as the source term S of each sample in the following

explanation of compositing (Equation 9).

Ia is the reected intensity due to ambient light.

Il is the intensity emitted by light source l.

kd is the di�use reection coe�cient for the material.

ks is the specular reection coe�cient for the material.

s is the specular exponent for the material.

N is the normalized surface normal at the sample location.

Ll is the normalized vector to light source l.

Rl is the normalized reected light vector of light source l.

The evaluation of Equation 4, including specular highlight e�ects due to ks

and s, corresponds to the Phong illumination model [Pho75]. An alternative

formulation of the Phong model [Bli77] avoids the computation of the reection

vector R by using the halfway vector H between the viewing vector V and

the surface normal N (see Figure 19). This is an accurate approximation

if the light sources and the viewpoint are assumed to be at in�nity. For
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ks = 0 the illumination model reduces to pure di�use or Lambertian reection

[FvDFH90]. Higher-order shading models, which include the physical e�ects

of light-material interaction [CT82], are computationally too expensive to be

considered for volume rendering.

4.1.5 Classi�cation and Compositing

Ray-casting algorithms rely on the low-albedo approximation to how the vol-

ume data generates, scatters, or occludes light [Bli82, KH84]. E�ects of the

light interaction at resampling location are integrated along the viewing rays

according to the following equation:

I(a; b) =
Z b

a
s(x) e�

R x
a
�(t)dt dx; (5)

where

I(a; b) is the intensity from a ray passing through the dataset between points

a and b;

s(x) is the source term, giving the light added per unit length along the ray,

including self-emission and reected light; and

�(t) is the absorption coe�cient, corresponding to the attenuation of light per

unit length along the ray due to scattering or extinction.

The mapping which assigns a value for optical properties like � or s to each

sample is called a transfer function. The transfer function for � is called opacity

transfer function, typically a continuously varying function �(f) of the scalar

sample value. Often it is also useful to include the gradientrf as an additional

parameter of the opacity transfer function �(f;rf). This approach has been
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widely used in the visualization of bone or other tissues in medical datasets or

for the iso-surface visualization of electron density maps [Lev88].

The source term s can also be speci�ed as a transfer function s(f) of the

scalar f . The simplest source term is direction independent, representing the

glow of a hot gas [Max95]. It may have red, green, and blue components,

with their associated color transfer functions sred (f), sgreen(f), and sblue(f).

More sophisticated models include shading e�ects, where the source term at

position x is calculated as s(x) = I(x). I(x) is the illumination at position x

as computed by Equation 4.

To get the discrete formulation of Equation 5 we consider a ray where the

intensities Si and opacities �i have been computed at at resampling locations i.

Using a Riemann sum approximation to the integral we can write Equation 5

as:

I(a; b) =
bX

x=a

Sx e
�

Px�1

t=a
�t ; (6)

which may be reformulated to:

I(a; b) =
bX

x=a

Sx

x�1Y
t=a

e��t: (7)

Assuming that �t is in the range [0; 1], we can approximate the exponential

term by its Taylor series expansion as e��t ' (1 � �t). This leads to the

following equation for the �nal intensity along a ray:

I(a; b) =
bX

x=a

Sx

x�1Y
t=a

(1� �t): (8)

This derivation follows [Lev88, Max95, Sab88, Wit93]. Intuitively, Equation 8

says that the intensity I at the current resampling location is the emission Sx

multiplied by the transparency (1��t) accumulated so far. The �nal intensity

I(a; b) is the sum of all intensities along the ray between points a and b.
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Compositing is the recursive evaluation of Equation 8. It was �rst intro-

duced in the context of digital image compositing, where it was formulated

using the \over" operator [PD84]:

I(0; n� 1) =
n�1X
x=0

Sx

x�1Y
t=0

(1� �t) (9)

= S0 + S1(1� �0) + S2(1� �0)(1� �1) + � � �
+ Sn�1(1� �0) � � � (1� �n�2)

= S0 over S1 over S2 over � � � Sn�1:

Because of the associativity of the \over" operator, the composition of four

sample source intensities Si can be computed in three di�erent ways [WH94,

Wit93]:

Front-to-back: I = (((S1 over S2) over S3) over S4)

Back-to-front: I = (S1 over (S2 over (S3 over S4)))

Binary tree: I = ((S1 over S2) over (S3 over S4))

The front-to-back or back-to-front formulations are used in sequential ray-

casting algorithms. The last formulation as a binary tree is especially useful

for parallel ray-casting algorithms, where partial results of segments along the

ray can be computed in di�erent processors [PKC94, Hsu93, WS93]. The

�nal composition of the partial results yields the same image as sequential

compositing along the ray.

Compositing is expressed algorithmically using recursion. The front-to-

back formulation is:

Iout = Iin + Si �i (1� �in) (10)

�out = �in + �i (1� �in);



CHAPTER 4. THE RAY-CASTING ALGORITHM 61

where Iout ; �out indicate the results of the current iteration, Iin ; �in the accu-

mulated results of the previous iterations, and Si and �i the sample intensity

and opacity values at the current resampling location. Substituting trans-

parency Ti for (1� �i) we get [Wit93]:

Iout = Iin + Si �i Tin (11)

Tout = Tin Ti:

Notice that the formulation in Equation 11 with transparencies Ti is more

e�cient than the traditional formulation with opacities �i in Equation 10. It is

therefore an advantage to to store transfer function tables with transparencies

instead of opacities.

When compositing back-to-front, the incremental opacities of Equation 10

do not need to be maintained:

Iout = Si �i + Iin (1� �i): (12)

Since opacities do not need to be updated, the complexity of back-to-front

compositing is independent of the use of opacities or transparencies.

All nodes in binary tree composition take four inputs: IL; IR are the ac-

cumulated intensities, and �L; �R are the accumulated opacities from the left

and right children, respectively. With these de�nitions, binary tree composi-

tion can be expressed as:

Iout = IL + (1� �L) IR (13)

�out = �L + (1� �L) �R;

where the leave nodes at the �rst level of the tree compute IL = Si �i and

�R = �i.
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There are several alternatives to volumetric compositing that have proven

useful. In X-ray or weighted sum projections, the value of the pixel equals the

sum of the intensities. Maximum Intensity Projections (MIP) project the max-

imum intensity along the ray into a pixel. Other simpli�cations includes �rst

opaque projection, where a sample is either fully opaque or fully transparent.

4.2 Ray-Casting Bottlenecks

Although conceptually simple, ray-casting is computationally expensive. The

main disadvantage is that the volume data is not accessed in storage order

due to the arbitrary direction of the viewing rays. We now discuss other

bottlenecks that inhibit real-time frame rates.

Expensive Address Arithmetic

The transformation from image space to object space coordinates is achieved

by using the homogeneous viewing transformation matrix Mv:

2
66666664

ii

ji

ki

wi

3
77777775
=Mv

2
66666664

xo

yo

zo

wo

3
77777775
: (14)

Mv de�nes an a�ne transformation that involves rotation, translation, and

scaling. It has to be calculated only once per projection. For each ray cast

from image space, Mv is used to determine the intersection of the ray with the

volume data. Alternatively, hierarchical data structures or hardware acceler-

ation is used to determine the intersection of the ray with an internal object

bounding box to skip empty space [SK94] (see Chapter 2).
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The viewing vector is transformed to object space. We call the distance

between resampling locations along the the transformed viewing vector the

sampling distance �, and 1
�
is the corresponding sampling frequency per unit

length. Starting from the �rst intersection point, � is added to the each re-

sampling location along the ray. The new oating-point sample location is

converted into an integer array index into the volume data. The oating-point

or �xed-point portion determines the weights for the interpolation inside the

cell. Alternatively, a 3D variation of Bresenham's algorithm modi�ed for non-

integer endpoints [KS86, Kau91] can be used to eliminate some of the oating-

point arithmetic. In either case, the required address arithmetic is substantial,

and the computational cost is much higher than in object-order algorithms.

Non-Uniform Sampling

Due to the arbitrary ray direction, the volume data is not sampled uniformly.

As Figure 20 illustrates, cells may contain more than one resampling location.

If the sampling distance � along the ray is small, such as for ray ri in the

�gure, consecutive samples fall into the same cell and have to be interpolated

using the same voxels. For non-orthogonal viewing directions this may happen

even if � has unit length, and the situation is aggravated for higher sampling

frequencies. One possible solution to this problem is to use caching of cell

voxels between the interpolation of consecutive samples along the ray.

However, caching is almost impossible if samples of neighboring rays map

onto the same cell, such as for rays rj and rk in Figure 20. If the samples that

share a cell are computed on di�erent processors in multi-processor machines,

this situation may also lead to expensive interprocessor communication.
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rj

ri

rk

Cell
Image Plane

Figure 20: Cells with more than one resampling location.

Interpolation

The implementation of tri-linear interpolation as de�ned in Equation 1 requires

13 multiplications and 20 additions for each resampling location. This arith-

metic overhead combined with the memory access to fetch the voxels makes

interpolation one of the most time consuming operations during volume ren-

dering.

Gradient Estimation

The gradients on voxel positions are independent of the viewing direction and

can therefore be pre-computed. Nearest neighbor sampling can be used to

estimate the gradient at the sample position during rendering by using the

gradient at the voxel position closest to the sample location. A more accu-

rate method performs a tri-linear interpolation of the gradient at the sample

position using the gradients of surrounding voxels.

Storing three oating-point components of the gradient vector at each voxel



CHAPTER 4. THE RAY-CASTING ALGORITHM 65

leads to high storage overhead. This method becomes prohibitive for medium

to high resolution datasets. Consequently, it is better to store an integer encod-

ing of the quantized gradient vector [FR93, Gla90]. However, the non-linear

shading function is very sensitive to quantization errors of the gradients. To

avoid any additional storage overhead, gradients are computed during render-

ing in high-quality ray-casting algorithms. However, as we show in the next

section, gradient computation leads to redundant data access.

Overlapping Cells

In general, gradient estimation for samples involves a larger voxel neighbor-

hood than interpolation. Using the 3D Sobel gradient �lter of Equation 2

requires access to a 3 � 3 � 3 neighborhood of voxels. Suppose that all cells

outlined in Figure 21a are used for the gradient computation. Neighboring

Overlapping
Cells

Gradient 
Support

b)a) rj

ri

Figure 21: Overlapping cells during gradient computation.

cells overlap for gradient estimation of samples along a single ray or from



CHAPTER 4. THE RAY-CASTING ALGORITHM 66

di�erent rays (for example, rays ri and rj in Figure 21b). This leads to unnec-

essary memory accesses and redundant computation. Notice that even uniform

resampling with one sample location per cell can not prevent this overlap.

Shading

Shading involves the application of a local illumination model to each sample

along the ray. It is without doubt one of the most expensive computations of

ray-casting in terms of arithmetic complexity. To get an approximation to the

surface normal N requires normalization of the gradient vector r f :

N(x; y; z) =
r f(x; y; z)

jr f(x; y; z)j : (15)

A straight forward implementation of this normalization requires an expensive

square root and divide operation, although many optimizations have been

developed [Gla90].

Each change of viewing angle or light source position requires the nor-

malization of vectors and the evaluation of Equation 4 at each resampling

location. To get color images, the illumination model has to be computed

for each color channel. However, shading does not require additional memory

access to voxels because it is a local operation on the samples.

Compositing

The cost of compositing varies between the three di�erent composition orders.

Front-to-back compositing has di�erent costs depending on whether opacities

or transparencies are used. Updating of opacities involves the computation of

�in+�i (1��in) at the cost of one addition and one multiplication if (1��in) is

saved during intensity calculations. Using transparencies, the update involves
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Updates Multiplies Adds

Opacity Transparency

Front-to-back: n� 2 3n� 3 4n� 6 2n� 2

Back-to-front: none 2n� 1 2n� 2 2n� 2

Table 4: Compositing costs for a ray with n samples.

only one multiplication for the calculation of Tin Ti. Table 4 summarizes the

cost of the di�erent approaches for n samples [Wit93].

4.3 Summary

Figure 22 shows a schematic diagram of the ray-casting algorithm and the

performance bottlenecks we discussed in this chapter. The dataow shown in

the �gure corresponds to the pseudo-code of Figure 18.

Ray-casting, as shown in Figure 22, can be viewed as a set of pipelined

processing steps. Pipelining is an important concept in hardware design and

for the design of e�cient parallel algorithms with local communication. A

pipeline consists of a sequence of so called stages through which a computation

and data ow. New data is input at the start of the pipeline while other data is

being processed throughout the pipeline. We call an algorithm fully pipelined if

all data transfers occurs between consecutive stages of the pipeline. However,

as we have outlined in this chapter, traditional ray-casting is not fully pipelined

due to the frequent and mostly random accesses to memory at various stages

of the algorithm.

Based on the observations in this chapter, we can identify several areas of

improvement to the basic ray-casting algorithm:
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Figure 22: Schematic diagram of the ray-casting pipeline and its performance
bottlenecks. Each stage either requires random access to the volume memory,
excessive arithmetic processing, or both.

Uniform resampling: A regular data access pattern into the dataset leads

to simpler address arithmetic and better spatial and temporal locality.

Use of coherence: By using the coherence between rays we avoid multiple

memory accesses to voxels of overlapping cells.

Caching of intermediate results: Bu�ering of intermediate results leads

to savings in arithmetic complexity and much reduced memory access.
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Fully pipelined dataow: A fully pipelined dataow leads to ray-casting

implementations where data ows strictly between computational stages.

Because voxels are accessed only at the beginning of the pipeline, this

leads to much reduced memory tra�c.

Parallelism: The computational demands of real-time ray-casting require to

use a high degree of parallelism, both for the memory system and for the

arithmetic processing units.

Some of these improvements are of strictly algorithmic nature, and they are

discussed in the following chapter. Other improvements require to think about

architectural issues, and we discuss them in Chapter 6. However, due to the

nature of the design process, most design decisions are not based on either

algorithmic or architectural considerations, but on the combination of both.

Consequently, the division between algorithm and architecture in the following

two chapters becomes di�cult and should be regarded as somewhat arti�cial.



Chapter 5

Fully Pipelined Ray-Casting

In this chapter we describe the fully pipelined algorithm for ray-casting that

has been implemented in the Cube-3 and Cube-4 hardware architectures. We

present several important extensions to the traditional ray-casting algorithm

that have been developed as an attempt to simplify both hardware and soft-

ware complexity.

Beginning with the �rst section, we discuss the use of templates to generate

discrete rays from the description of the viewing parameters. This approach

guarantees that each voxel inside the dataset is accessed exactly once per

projection. Although template-based ray-casting is not new and has been well

documented in the literature [YK92, SS92], we carefully explain all aspects

and details of the algorithm that are relevant to the architectures presented in

Chapters 7 through 9.

Section 5.2 describes a novel way of gradient estimation using interpolated

samples of neighboring rays. Using this approach avoids multiple access to

voxels of overlapping cell neighborhoods. The caching of interpolated sam-

ples avoids redundant computation and greatly improves the computational

70
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e�ciency.

Both improvements will lead to a fully pipelined version of ray-casting,

discussed in Section 5.3, that dramatically reduces accesses to the voxel data

and leads to an e�cient implementation in hardware.

5.1 Template Based Ray-Casting

To simplify the address arithmetic and to get a mapping of ray-samples onto

cells that is one-to-one, we use a template based ray-casting technique that

was �rst introduced by Yagel and Kaufman [YK92] and independently devel-

oped for a SIMD massively-parallel processor by Schr�oder and Stoll [SS92].

Figure 23 shows an example for parallel projection. Instead of casting rays in

Discrete RayBase-Plane

Image Plane

Figure 23: Discrete rays are cast along cells from the base-plane into the
dataset.
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~v := �!ov :=
�!
v0;

n := 0;

while ( ~v !=
�!
v1 ) do

Ray Template[n] := b~v + 0:5c � �!ov;
�!ov := b~v + 0:5c;
n++;

~v +=
�!
�v;

end while

Figure 24: Template Generation Pseudo-Code.

image space, rays are sent into the dataset from each pixel on the base-plane,

which is the face of the volume memory that is most perpendicular to the

viewing direction. The resulting base-plane image is then projected onto the

image plane using a 3D transformation and a 2D image resampling operation.

The cells that are pierced by a ray lie on so-called discrete rays. The dis-

crete rays are pre-computed using a 3D variation of Bresenham's line drawing

algorithm [KS86, Kau91]. This algorithm guarantees constant stepping with

unit increment in major viewing direction so that all discrete rays perfectly tile

the volume without holes or overlaps (see the two discrete rays in Figure 23).

The uniform sampling of the volume by the discrete rays allows to store the

path of one discrete ray in a lookup table or template that can be reused for

every other ray.

5.1.1 Template Generation

The pseudo-code in Figure 24 shows the simple routine to generate templates

containing the integer steps of the discrete rays. The code generates a tem-

plate for the discrete ray starting at voxel position
�!
v0 on the base-plane and

ending at voxel
�!
v1.

�!
�v is the oating point vector in viewing direction whose
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vector component in major viewing direction has been normalized to one. The

variable ~v holds the oating point coordinates of the current sample location,

and �!ov contains the truncated integer coordinates of the previous sample lo-

cation. Ray Template is a one-dimensional array of step vectors. The steps

that are stored at index n are equal to b~v + 0:5c � �!ov . When sampling in the

same cell, this vector will be zero in all dimensions.

Figure 25 shows an example template using a 2D drawing. Since the dis-

Z

X

0 

-1 

0

-1

(Steps in X)
Interpolation

Weights

Template

Identical Weights

Figure 25: A pre-computed template stores discrete ray steps and interpolation
weights for sample points along the rays.

crete rays step with unit distance in major viewing direction (the Z-axis in

Figure 25), the template only needs to store the stepping in non-major direc-

tions (the X-axis in the �gure). For parallel projections the template has n

entries for an n3 volume. The resampling weights for interpolation inside the

cells are the same for all discrete rays and can be pre-computed and stored in

the template as well.

For perspective projections we make the observation that all rays cast from

the same scanline of the base-plane form a so-called projection-ray plane (PRP)
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into the volume (see Figure 26). Inside each PRP the discrete rays follow the

X

ZY

X-Template

Y-Template

Projection-Ray
Planes

Figure 26: Perspective ray-casting requires 2D templates of size n2 each.

same paths. The templates can be thought of as projections of the discrete

rays along the two non-major directions (X and Y in Figure 26). Two X-

and Y-templates of size n2 each store the steps and weights of all perspective

discrete rays.

Any ray exiting at the top face of the volume corresponds in a one-to-one

fashion to a new ray that starts at a base-plane pixel n positions away (see for

example the shaded cells in Figure 23). We call this a wrap of a discrete ray.

Discrete rays can have at most one wrap in 2D and at most two wraps in 3D.

5.1.2 The Base-Plane Image

For orthogonal projections the dimensions of the base-plane is n� n pixels as

illustrated using a 2D drawing in Figure 27. For non-orthogonal projections
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2n-1n

Figure 27: Varying size of the base-plane depending on the viewing angle.

the size of the base-plane becomes larger because not all discrete rays enter

the volume at the front-most face. Figure 27 shows the worst case scenario of

a projection under �450 viewing angle where a total of 2n � 1 rays are cast.

In three dimensions the maximum base-plane size is (2n�1)� (2n�1) pixels.

The discrete ray generation algorithm is based on the fact the the viewing

angle is constrained to �450 around the major axis. Consequently, a switch

of the base-plane occurs as soon as the major direction of the viewing vector

changes (see Figure 28). Zero-order interpolation along voxels for projections

at exactly 450 prohibits any visible artifacts due to the changing resampling

pattern after a base-plane switch. However, the access pattern to the volume

data changes dramatically. For two out of the three possible major directions

the volume is accessed against storage order after a base-plane switch. We will

come back to this issue in our discussion of high-bandwidth memory systems

in Chapter 6.

The center of projection C and the �eld-of-view (FOV) in perspective pro-

jections inuence the sampling rate of the base-plane image (see Figure 29).
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α
α oBase-Plane I (   = 45  )

α oBase-Plane II (   = 46  )

Volume Slices

Figure 28: Switch of the base-plane for viewing angle � > 450.

The discrete line algorithm casts exactly one discrete ray per pixel of the base-

Projections
c) Two Base-Plane b) Undersamplinga) Correct Sampling

CC

FOV FOV

C

Figure 29: Sampling of the base-plane image for perspective projections.

plane, or a maximum of 2n � 1 rays per scanline. In cases where the FOV

extends across the dataset (Figure 29a) the template-based sampling approach

guarantees better sampling than regular image order ray-casting, which would

cast n rays spanning the FOV and send wasteful rays that miss the dataset.
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However, for a small FOV the discrete line stepping yields undersampling in

the active regions of the base-plane (Figure 29b). Figure 29c shows a case

where two base-plane images contribute to the �nal view image. The worst

case in 3D is the generation of three base-plane projections for a single per-

spective image.

5.1.3 Resampling the Volume

So far our discussion of template based ray-casting has focused on the discrete

rays of cells without consideration to any speci�c resampling method. Fig-

ure 30 shows three di�erent choices for resampling locations and interpolation

methods. The simplest solution, shown in Figure 30a, is to use nearest-neighbor

1

1

c) Tri-Linearb) Bi-Lineara) Zero-Order

Figure 30: Sampling distance and interpolation method along rays.

sampling or zero-order interpolation. The sample values along the ray corre-

spond to the voxels de�ned by the discrete line algorithm. Assuming that after

n steps along the ray we are at voxel position ~v, the voxel at position ~v0 that
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is sampled next is computed as:

~v0 = ~v + Ray Template[n]: (16)

Using this technique, Yagel reports a speedup of roughly 2 { 3x compared to a

brute-force ray-caster [Yag91a]. A similar approach has been used by Schr�oder

and Stoll [SS92] to achieve high frame rates on a SIMD multiprocessor.

However, zero-order interpolation leads to image artifacts for arbitrary

viewing directions and is generally not acceptable in modern volume rendering

applications. A notable exception are projections for �450 viewing angle or

orthogonal direction along a major coordinate axis. For these special cases the

viewing rays start at the center of base-plane pixels and line up perfectly with

the voxel positions. It is therefore better to use the original voxel values (i.e.,

nearest neighbor sampling) than to perform any form of interpolation.

To achieve higher accuracy than nearest neighbor sampling for arbitrary

viewing directions, we employ linear or higher order interpolation. Figure 30b

shows resampling at unit steps in major viewing direction and bi-linear in-

terpolation on voxel slices pierced by the rays. This method leads to a very

uniform resampling of the dataset due to the one-to-one mapping of sample

locations and dataset cells. It has been successfully applied in shear-warp ren-

dering algorithms [LL94]. However, the 2D interpolation may lead to aliasing

artifacts if the voxel values or opacities contain high frequency components

[Lac95a].

A consequence of the uniform stepping by one in major direction is that the

sampling distance � along the ray varies between 1 for orthogonal projections

and
p
3 for projections along the main diagonals through the dataset. The

under-sampling along the ray can be corrected by adjusting the opacity values



CHAPTER 5. FULLY PIPELINED RAY-CASTING 79

for each sample as follows:

�� = 1� e�� �; (17)

where � is the uncorrected opacity value, and �� is the corrected opacity

value, depending on the sampling distance � [Max95]. We found that the view

dependent sampling rate is in practice not an important consideration due to

the averaging nature of the compositing operator.

Figure 30c shows a more accurate resampling method using tri-linear in-

terpolation. Instead of sampling with unit distance in major viewing direction,

the resampling locations are generated at unit distance along the rays. This

guarantees a view-independent sampling rate and true 3D interpolation with-

out aliasing artifacts. As discussed in the previous section, all sample positions

in the same slice across parallel rays have the same interpolation weights (see

Figure 25). These weights can be pre-computed and stored in ray templates.

Using this approach, Yagel and Ciula [YC94] report a speedup of 1.3 { 1.4x

compared to brute-force ray-casting.

5.1.4 Warping the Base-Plane Image

The image produced by template based ray-casting is an oblique projection

of the volume data [FvDFH90]. An a�ne image warp has to be applied to

produce the �nal image. The homogeneous viewing transformation matrixMv

(see Equation 14) can be decomposed into a scaling component and a 2D warp
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matrix (after [Lac95a]):

Mv =

2
66666664

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

3
77777775

(18)

=

2
66666664

m11 m12 (m13� sim11� sjm12) m14

m21 m22 (m23� sim21� sjm22) m24

m31 m32 (m33� sim31� sjm32) m34

0 0 0 1

3
77777775

2
66666664

1 0 si 0

0 1 sj 0

0 0 1 0

0 0 0 1

3
77777775

= Mwarp Mshear:

The implementation of the 2D image warp is straight forward and can be

accomplished using forward or backward projection [Wol90]. Real-time per-

formance for the warping of large images can be achieved using special image

processing instructions on commodity processors [PW96], texture mapping

hardware on high-end graphics workstations [SKvW+92], or special-purpose

image processing hardware [JJL96].

The additional 2D resampling of the image may cause blurring artifacts.

However, in practice, we have never observed any signi�cant image di�erences

between template-based and traditional ray-casting.

5.2 ABC Gradient Estimation

We have seen in Chapter 4 that gradient estimation leads to unnecessary mem-

ory access and redundant computation due to overlapping cell neighborhoods.

Furthermore, we want to achieve a fully pipelined algorithm, where all data

transfers occur between consecutive stages of the pipeline. In this section we
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present a novel gradient estimation technique that calculates the gray-level

gradient not from voxel data, but from interpolated samples of neighboring

rays. Figure 31 illustrates the idea in 3D. Consider the black sample at the

Current Ray

Figure 31: ABC Gradient Estimation.

current sample location. We call the associated ray the current ray. Central

di�erences between samples of neighboring rays (the thick lines in the �gure)

allow us to estimate the gradient without further access to the voxel data.

Because the computation involves samples along the current ray and from the

rays above and below, we call this method ABC gradient estimation. The

following sections present several ABC gradient methods. They di�er by the

number of samples used during the gradient computation.

5.2.1 6-Neighborhood Gradient

The simplest approach, shown in Figure 32 using a 2D drawing, is called the 6-

neighborhood gradient. We compute central di�erences using six samples values

of neighboring rays. The resulting gradient vector has two components parallel

to the base-plane, and one component in direction of the ray. Dashed lines
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in the �gure indicate the slices of interpolated samples parallel to the base-

plane. The gradient components inside the slice of the current (black) sample

Base-Plane I

B
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e-
P
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ne

 I
I

Figure 32: 6-Neighborhood Gradient.

are orthogonal to each other. However, the gradient component in direction

of the ray is slanted, depending on the viewing direction (see Figure 32).

Furthermore, the central di�erence along the ray is computed over a view-

dependent length. In the worst-case, for 450 viewing along a main diagonal

of the dataset, the distance between samples along the ray is
p
3 units longer

than the distance between the samples parallel to the base-plane.

A more critical problem occurs after a switch of the base-plane during

rotations of more than �450. The left drawing in Figure 32 shows the situation
for 450 viewing direction, where an image is projected onto the horizontal base-

plane. For an angle greater than �450 the major viewing direction changes,

as shown in the right drawing of Figure 32. Di�erent samples are used to

calculate the central di�erences parallel to the base-plane. The sudden change

of the gradient leads to noticeable changes in object shading. The intensity

variations of subsequent images during a base-plane switch result in intolerable

temporal aliasing.
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5.2.2 26-Neighborhood Gradient

One approach to alleviate the problems of the 6-neighborhood gradient is to

use a higher order gradient �lter on a 3�3�3 sample neighborhood. Because

26 samples are involved in the computation, we call this the 26-neighborhood

gradient (see Figure 33). Samples along nine rays are used during convolution
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Figure 33: 26-Neighborhood Gradient.

with a 3� 3� 3 gradient �lter, for example, the Sobel �lter of Equation 2.

The 26-neighborhood gradient leads to better overall image quality when

compared to the 6-neighborhood gradient. However, the convolution with

a gradient �lter is computationally expensive. The view dependent slanted

direction of the rays leads to non-orthogonal 3� 3� 3 sample neighborhoods.

Furthermore, the switch of base-planes still leads to temporal aliasing, because

the sample neighborhoods vary for di�erent base-planes (see Figure 33).

5.2.3 10-Neighborhood Gradient

To circumvent the aliasing problems we need to ensure view-independent

and orthogonal gradient components. A possible approach is to use the 6-

neighborhood gradient, but with two gradient components orthogonal to the
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current ray. Figure 34 shows how the samples on the left and right ray are

used for a linear interpolation of two additional samples (in white). The gra-

dient component between these samples is orthogonal to the ray direction. We
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Figure 34: 10-Neighborhood Gradient.

call this approach the 10-neighborhood gradient, because 10 voxels participate

in the computation in 3D. There is no temporal aliasing during base-plane

switches, because the gradient components remain orthogonal to each other

(see Figure 34).

However, some problems remain. The di�erence in lengths between the

gradient components is aggravated when compared to the 6-neighborhood

gradient. Furthermore, the local coordinate system de�ned by the gradient

components is still view dependent. All light vectors used during the shading

calculations must be transformed to this coordinate system for each frame.

For perspective projections this amounts to transforming the light vectors to

di�erent local coordinate systems for every ray. Perspective projections also

require di�erent linear interpolation weights for every ray.
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5.2.4 12-Neighborhood Gradient

Our �nal solution solves all of the above problems by calculating view-

independent gradient components parallel to the main axes of the volume

memory (see Figure 35). Two gradient components are computed inside the

current slice. The third gradient component is computed perpendicular to the

current slice using additionally interpolated samples (shown in white). In 3D,

these additional samples require a bi-linear interpolation among ray samples.

For each bi-linear interpolation we need four samples, plus two samples in
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Figure 35: 12-Neighborhood Gradient.

each of the other gradient component directions. Consequently, we call this

technique the 12-neighborhood gradient. An additional bene�t of this method

is that the central di�erences are taken over equal distances for all gradient

components.

Chapter 7 contains a comparison of errors between the 6-, 10-, 12- and

26-neighborhood gradient and the analytic normals on a sphere. We also

present results from a 900 rotation around the sphere with a base-plane switch

that demonstrates the temporal aliasing problems for the 6-, 26-, and 10-

neighborhood gradients.
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5.2.5 Proof of Equivalence

We can easily proof that the ABC gradient is equivalent to the traditional

gray-level gradient. Because the three gradient components are computed

independently, it is su�cient to proof this equivalence for the X gradient

component. To simplify the discussion, we will use Vi for the voxel value at

integer location i, and St for the interpolated sample value at sample location

t. Figure 36 shows the voxel and sample values we use for this proof. For

simplicity, they are consecutively enumerated along the X axis.

X

0 1 2 3

1

wx

S S S0 1 2

V VVV

Figure 36: Proof of Equivalence.

Recall from Equation 3, that the gray-level gradient at voxel position x is

computed as rf(x) = f(x+ 1)� f(x� 1). Using Gx instead of rf(x) and Vx

instead of f(x), we compute the x-gradient components at the voxel locations

V1 and V2 as:

Gx(V1) = V2 � V0 (19)

Gx(V2) = V3 � V1:

To compute the x-gradient at sample location S1 requires a linear interpolation
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between these gradients as follows:

Gx(S1) = (1� wx)Gx(V1) + wxGx(V2) (20)

= (1� wx)(V2 � V0) + wx(V3 � V1)

= (1� wx)V2 � (1� wx)V0 + wxV3 � wxV1:

Alternatively, we can compute the ABC gradient at sample position S1 using

the central di�erence between interpolated neighboring samples:

�Gx(S1) = S2 � S0: (21)

Comparing Equation 21 to Equations 19 and 20 shows that the arithmetic com-

plexity of ABC gradient estimation is much smaller than for the traditional

gray level gradient due to the caching of previously interpolated samples. Ex-

panding the linear interpolation terms of the samples leads to the same result

as in Equation 20:

S0 = (1� wx)V0 + wxV1 (22)

S2 = (1� wx)V2 + wxV3

�Gx(S1) = (1� wx)V2 + wxV3 � (1� wx)V0 � wxV1:

This proof holds only for linear interpolation. Furthermore, all arithmetic

operations are assumed have in�nite precision. This assumption is not true

for any hardware implementation, and special care has to be taken to avoid

problems due to arithmetic error accumulation.

5.3 Summary

Figure 37 shows the new ray-casting pipeline with the two modi�cations intro-

duced in this chapter: template-based address generation and ABC gradient
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Figure 37: Fully Pipelined Ray-Casting Algorithm.

estimation. The main di�erence compared to Figure 22 is the fully pipelined

dataow. The voxel data is only accessed at the beginning of the pipeline by

the interpolation stage. The template-based data traversal guarantees that

each voxel is accessed exactly once per projection. The interpolated samples

are cached and re-used during ABC gradient estimation, resulting in reduced

arithmetic complexity. ABC gradient estimation also prevents overlapping

neighborhoods between voxels used for interpolation and gradient estimation.

Once all stages are �lled with data, the fully pipelined ray-casting algorithm

is capable of delivering one result per computation period. The algorithm
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dramatically increases the data throughput when compared to traditional ray-

casting.

In the next chapter we discuss several important architectural issues of par-

allel computer systems, such as parallel memory systems, data and task dis-

tribution, arithmetic unit replication, and communication between processing

nodes. We look at ways of exploiting the inherent concurrency of ray-casting,

and present three di�erent ways of parallelizing the fully pipelined ray-casting

algorithm.



Chapter 6

Parallel Architectures

For a volume rendering system that tries to achieve real-time performance it

is imperative to use parallelism. The last chapter introduced pipelining, one

form of parallelism, into the ray-casting algorithm. In this chapter we look at

ways to explore parallelism in the architectural domain.

We start with a discussion of memory systems for volume rendering. In Sec-

tion 6.1, we discuss the basic design considerations for memory systems. Sec-

tion 6.2 introduces interleaving, the primary method to introduce parallelism

into the memory. Section 6.3 presents block memory and vector memory, two

methods of interleaving that allow high-bandwidth access to rectilinear volu-

metric datasets. We argue that vector memory provides a scalable solution to

the high bandwidth requirements of volume rendering.

In Section 6.4, we introduce a vector memory organization based on a

linear skewing of the address space that allows for conict-free access to voxel

scanlines from all three principal viewing directions. This memory system is

used for the architectures presented in this dissertation. In Section 6.5 we

discuss an important extension to the skewing scheme that allows for modular

90
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hardware implementations with scalable performance

In Section 6.6 we apply unit replication, another form of parallelism, to the

fully pipelined ray-casting algorithm outlined in the previous chapter. Finally,

in Section 6.7, we present three approaches to the parallelization of pipelined

ray-casting. Depending on how the the algorithms proceed we call these par-

allelization ray-, beam-, or slice-parallel. Each of these algorithms leads to a

di�erent architecture presented in the following chapters.

6.1 Memory System Basics

During the last decade, very large scale integrated circuit technology (VLSI)

has increased the speed of logic faster than the speed of memory [HP90].

This trend has made the memory system the principal design challenge for

every high-performance computer system. The three parameters that deter-

mine memory system performance are access time, cycle time, and memory

bandwidth. Access time is the time it takes from data request to data delivery.

Cycle time is the minimum amount of time between data accesses. Memory

bandwidth determines the amount of requests that can be handled per unit

time. Access and cycle times are determined by physical factors of the mem-

ory chip, such as technology and internal delays. The maximum achievable

memory bandwidth is determined by the way the memory system is organized.

Memory modules are the smallest building blocks of the memory system.

The two main classes of memory modules are static random access memory

(SRAM) and dynamic random access memory (DRAM). SRAMs use multiple

transistors to hold each bit of information, whereas DRAMs use a single tran-

sistor and a capacitor per bit. Consequently, DRAMs are about one hundred

times more dense than SRAMs, but SRAMs are much faster and have only
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about one-tenth of the access and cycle time of DRAMs [Fly95]. To meet the

large storage requirements of volume rendering, our memory system needs to

be composed of high-density DRAMs.

A memory bank consists of multiple memory modules that share the same

input and output buses. Although only one memory module of the memory

bank is capable to respond to a memory request at any given point in time,

memory banks allow to hide the long access and cycle time of standard DRAMs

using a technique called interleaving.

6.2 Memory Interleaving

The idea of memory interleaving is to partition the address space such that all

data references are distributed fairly uniformly across memory modules. The

simplest and most common form of interleaving assigns successive memory

addresses to distinct memory modules. For m memory modules, enumerated

from 0 to (m � 1), memory address a is assigned memory module number

k = a mod m. Figure 38 shows the resulting partitioning of the address space

across memory modules.

The index i into the memory module is calculated as i = b a
m
c. The number

of memory modules in an interleaved memory bank is called the degree of

interleaving. Alternatively, a memory bank is said to be m-way interleaved.

If m is a power of two, the calculation of a mod m degenerates to a masking

operation of the low-order bits of the address a. The index i into the memory

module is provided by the remaining higher order bits of a. In this case the

memory is said to be low-order interleaved [Fly95].

Using low-order interleaving is a standard technique in almost all high-

performance computer systems. However, low-order interleaving only provides
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Figure 38: Low-order interleaved memory system with m memory modules.
Memory address a is assigned to memory module k according to k = a mod m.

maximum bandwidth if the data access is sequential and creates no interfer-

ence. Notice in Figure 38 that the addresses are stored successively in distinct

memory modules. We call such an organization rows across the memory, be-

cause it is similar to the row-wise assignment of successive addresses in a 2D

array. If the data access pattern is sequential and by row, the memory is able

to exhibit maximum bandwidth. However, accesses to columns can have se-

vere performance degradations, because only a subset of the memory modules

(in the worst case only one) is being referenced.

Given two consecutive addresses ai and ai+1, we call their distance ai+1�ai
the stride of the access pattern. Low-order interleaved memory performs best

for consecutive stride one (row) access, but performance breaks down for stride

m (column) access. The problem occurs for any stride t such that t and m

have a common factor, that is if gcd(t;m) > 1, where gcd stands for the

greatest common divisor [NM87]. For example, consider the access to a low-

order interleaved memory system with stride m. For some starting address a,
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the access pattern is a; a +m; a + 2m; a + 3m; � � �a + (m � 1)m. All of these

references fall onto the same memory module at position k = a mod m. This

leads to memory access conicts. In multi-stage networks it may lead to a

memory hot spot and network blockage [PN85].

Such stride accesses occur frequently volume rendering, which exhibits sys-

tematic references to matrix data. For low-order interleaved memory systems

this may lead to worst case performance. For example, accessing the volume

data against storage order signi�cantly slows down performance of object-order

volume renderers. One solution is to store the dataset three times, once for

each main axis. This approach has been taken in current object-order shear-

warp implementations [LL94]. However, data triplication increases the already

high storage requirements of volume rendering.

The design of a dedicated architecture for volume rendering requires a

memory organization that naturally supports the high-bandwidth needs of

volume rendering without pre-processing and data replication. The di�culty

is to design a memory system that sustains a continuous ow of data from the

memory to multiple parallel processors.

6.3 Memory Systems for Volume Rendering

Consider a regular volumetric dataset with n� n� n voxels. Figure 39 shows

a 4� 4� 4 dataset in its local coordinate system. Each voxel in the �gure is

represented by its address a, which is the [zyx] tuple with the local coordinates

of the voxel. For example, the voxel at location x = 1, y = 3, and z = 0 has

address a = [031]. We refer to this standard arrangement of voxels as volume

space.

For maximum performance we need to interleave this dataset across m
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Figure 39: Assignment of voxel addresses [zyx] in volume space for a 4�4�4
dataset. Numbers at grid points indicate the memory module where the voxel
is stored.

memory modules, each containing w words. Assuming that each voxel requires

one word of storage (either 8 or 16 bits), we need a memory capacity of wm �
n3 in order to store the complete dataset. To distribute the volume space

across memory modules, the voxel address a = [zyx] must be decomposed into

a memory module number k, and an index i into the module (the address of

the word inside a module).

To interleave a regular, rectilinear volumetric datasets in memory means to

subdivide volume space into smaller subsets that can be accessed during one

memory cycle. The minimal building blocks of any rectilinear subdivision are

voxels (0-dimensional), vectors (1-dimensional), rectangles (2-dimensional),

and blocks (3-dimensional). In the following two sections we consider block

or vector data subdivisions. We call the resulting memory systems block mem-

ory and vector memory.
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6.3.1 Block Memory

The minimum voxel cell required for tri-linear interpolation consists of eight

voxels, which can be stored in an eight-way interleaved memory. The easiest

way to ensure conict-free access to any cell of eight voxels is to use low-order

interleaving in each of the three dimensions. A voxel with address a = [zyx]

is stored in memory module k at index i as follows:

k = (x mod 2) + 2 (y mod 2) + 4 (z mod 2); (23)

i = bx
2
c+ 2 by

2
c + 4 bz

2
c:

Equation 23 corresponds to using the least signi�cant bits of the voxel address

in each dimension (x0; y0 and z0) as coding for the memory module number

(k = [z0y0x0]). The index i is given by the remaining bit pattern of the voxel

address. Figure 40 shows the resulting assignment of voxels to memory mod-

ules in three dimensions. Notice that the lower left corner of the cell may fall

on even grid points (dark outlined cells) or on odd grid points (dashed cells).

This variation has to be considered during assignment of the interpolation

weights. It can be corrected in software or in hardware by supplementing each

memory module with a special weight modi�cation unit [Kni93].

8-way interleaved memory has been used in special-purpose volume render-

ing architectures, for example in VOGUE [Kni93, KS94] and VIRIM [GPR+94]

(see Chapter 3). Other block memory systems for volume rendering include

the 64-way interleaved memory cube used in the PARCUM system, which al-

lows conict-free access to a macro volume element (i.e., a block) of 64 voxels

[JS88] (see Section 3.3.1).

Block-based volume memory is a generalization of the techniques used to

access rectangles of pixels in 2D raster display memory [CLR82, Gup81]. It

o�ers a simple and e�ective memory organization that allows for compact
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Figure 40: Assignment of voxels to memory modules in an 8-way low-order
interleaved volume memory.

hardware implementations. Any cell of eight voxels can be fetched conict-free

in one memory access. Subsequent accesses occur at intervals corresponding

to the cycle time of the memory. Performance can be improved by pre-fetching

larger neighborhoods and using the fast DRAM page mode during accesses to

pre-fetched voxels [KS94].

Block memory systems use a �xed degree of interleaving. The entire band-

width of an 8-way interleaved memory bank is consumed by a single processor

during interpolation or gradient estimation. To allow several processors to
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operate in parallel requires to copy complete memory banks with m mem-

ory modules each. Each memory bank is statically connected to a di�erent

processor.

Although multiple block-based memory banks increase the data through-

put, the static connection between memory and processors leads to problems

for data and task distribution. Current implementations of block-based mem-

ory systems replicate the data in each memory bank, such as in the VIRIM ar-

chitecture [GPR+94]. Other solutions require a high-bandwidth global network

between processors, such as in the VOGUE architecture [Kni93]. The com-

plexity of this interconnection becomes prohibitive for high resolution datasets.

6.3.2 Vector Memory

As we have seen in Section 6.2, low-order interleaving allows access to row

vectors of data. However, any access to vectors with a stride greater than one

leads to access conicts and performance degradation. Vector memory systems

allow accesses with a stride of the form 2k, 10k, or other even dimensions.

One way to design vector memory is to cause m and the stride t to be

relatively prime. For example, for strides of the form 2k it is possible to

interleave the memory across 2k � 1 modules [Fly95]. Another approach is to

apply a Boolean (or binary) matrix multiplication to the addresses [NM87].

Alternatively, addresses can be re-mapped using a hash table [Fly95]. Batcher

[Bat77] and Frailong et. al [FL85] use XOR operations to map addresses to

memory modules.

Vector memory o�ers an unlimited degree of interleaving and therefore an

appropriate means to adjust the maximum bandwidth of the memory system

to the expected maximum data throughput. The properties of vector memory,

high data throughput and scalability, make it the solution of choice for our
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real-time volume rendering architectures. The design challenge is to provide

su�cient memory bandwidth while keeping the network between memory and

processors at a manageable size.

Our vector memory uses a linear skewing of the address space that allows

conict-free access to any vector parallel to a principal axis [KB88]. This skew-

ing scheme can be extended to allow for conict-free access to voxel vectors

along any of the 26 primary directions, i.e., along voxel scanlines and primary

diagonals [CK95]. In the following section we explain the linear skewing that

is used for the architectures described in this thesis. We start with the spe-

cial case m = n, where the degree of interleaving is the same as the dataset

dimension. In Section 6.5 we generalize our results to the case m < n, such

that gcd(m;n) 6= 1.

6.4 Skewed Memory Organization

For the mapping of a voxel with address a = [zyx] onto a memory module k

and index i we use the skewing function � : [z; y; x] ! [k; i]. If m � n, the

dataset can be mapped into memory by placing the voxel with address [zyx]

in memory module number k at index i as follows:

k = (x + y + z) mod n 0 � k; x; y; z < n;

i= y + zn 0 � i < n2:
(24)

The index mapping places adjacent voxels in X direction in the same relative

locations of adjacent memory modules (i.e., rows across the memory). This

choice of index mapping is arbitrary [KB88]. Figure 41a shows the resulting

assignment of voxel addresses [zyx] to memory modules, for n = m = 4. We

de�ne a beam to be a voxel scanline parallel to a coordinate axis in volume

space. A beam parallel to the �-axis is called a ��beam. For example, rows
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Figure 41: 3D skewed memory organization for a 4� 4� 4 dataset. a) Dataset
stored inm = 4 memory modules. b) Dataset stored inm = 2 memory modules.
Thick lines indicate slice boundaries inside the memory.

and columns are called X-beams and Y -beams, respectively, and Z-beams

are called axles. If n is the dataset resolution, X-, Y -, and Z-beams have a

stride of 1, n, and n2, respectively. The skewed memory organization allows

for conict free access to any beam of voxels.

We de�ne an order of voxels inside a beam based on their addresses in

volume space as follows: For any two voxels v1 with a1 = [ijk] and v2 with

a2 = [lmn], we say v1 > v2 if [ijk] > [lmn]. The distance by which two

ordered beams are shifted is called their skewing di�erence. For example,

beams that are stored in consecutive memory indices i in Figure 41a have a

skewing di�erence of one.
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6.5 Memory Partitioning for m < n

If m < n, the mapping is performed on partitions of beams in X direction,

each of which is no longer than m. We require that n and m are not relatively

prime. If g = n
m
6= 1 is their greatest common divisor, each memory module

stores g voxels. This corresponds to a re-mapping of the skewed memory space

by a partitioning function � : [k; i]! [kp; ip], where:

kp = k mod m 0 � kp < m;

ip = i n
m
+ b k

m
c 0 � ip <

n3

m
:

(25)

Figure 41b shows the partitioned memory space for n = 4 and m = 2. It is

important to notice that this skewing and partitioning of the memory space

works for any n and m not relatively prime. In general, the computation of

(x + y + z) mod n or k mod m involves a division operation. If n and m are

powers of two, it degenerates to a masking operation with the low order bits

of the operand.

Figure 42 shows the e�ect of address-partitioning in volume space. We

refer to the partitioned beams as partial beams. Each partial beam contains m

voxels, m < n. The �gure shows the partial beams in storage order, i.e., the

partial beams in X, but the skewed memory organization allows for conict-

free access to partial beams from any major direction.

The memory address ip in each memory module can be computed incre-

mentally for consecutive access to partial-beams. A -slice is a 2D array of

voxels with constant  coordinates. In the slice-parallel algorithm, we access

voxels from X-, Y -, or Z-slices by consecutively fetching partial beams inside

these slices. We denote the currently accessed partial beam number by Np,

the corresponding beam number by Nb, and the slice number by Ns. There

are n
m
partial beams in one beam. In order to calculate ip, we multiply i with
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Figure 42: Beams and the partitioning of beams into partial beams in volume
space.

n
m
and add the current partial beam number Np:

ip = i
n

m
+Np = (Nb +Nsn)

n

m
+Np

= Np +Nb

n

m
+Ns

n2

m
: (26)

For consecutive access to the slices, Np, Nb, and Ns are incremented in order,

for example, in positive coordinate direction.

Our skewed memory organization has several important advantages. Using

m memory modules, it allows to store an n3 dataset without data duplication.

The skewing guarantees conict-free access to partial beams of m voxels from

all three major viewing axes. Finally, it allows for an unlimited degree of

interleaving, which leads to scalable memory system performance.



CHAPTER 6. PARALLEL ARCHITECTURES 103

6.6 Pipelining and Unit Replication

As mentioned in Chapter 4, pipelining leads to the processing of several data

items in parallel, and it is considered one of the principal ways of introducing

parallelism into an algorithm or architecture. The fully pipelined ray-casting

algorithm presented in the previous chapter (Chapter 5) leads to the pipelined

architecture shown in Figure 43. It consists of �ve processing stages: data

Classification

Estimation
ABC Gradient

Shading &

Compositing

Interpolation

Data Access

Figure 43: Processor Pipeline for Ray-Casting.

access, interpolation, ABC gradient estimation, shading and classi�cation, and

compositing. Notice that the voxel data is accessed only at the �rst stage of the

pipeline. All subsequent data transfers happen between consecutive pipeline

stages without further access to the volume memory.

However, pipelining itself can not deliver the required processing power for

real-time volume rendering. At each stage of the pipeline there is only one

arithmetic unit to perform computationally expensive operations, such as in-

terpolation, shading, or compositing. In order to achieve higher performance

we need to exploit another form of parallelism called unit replication [HJ88].
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Unit replication at each stage of the ray-casting pipeline leads to the parallel

rendering pipelines shown in Figure 44. By pipelining and unit replication we

Classification Classification Classification

Estimation
ABC Gradient

Shading &

Compositing

Interpolation

Data Access

Estimation
ABC Gradient

Shading &

Compositing

Interpolation

Data Access

Estimation
ABC Gradient

Shading &

Compositing

Interpolation

Data Access

Figure 44: Parallel Ray-Casting Pipelines.

achieve the maximum level of parallelism and performance for the architec-

ture. However, other important issues are the interconnections and data paths,

both between processors and memory, and between processors of di�erent ren-

dering pipelines. The cost of communication in terms of area, input/output

ports, packaging, and delay is high compared to the cost of logic and storage

[HP90]. The types of communication networks and dataow will be the distin-

guishing factors between the architectures we discuss in the reminder of this

dissertation.

6.7 Parallel Pipelined Ray-Casting

Figure 45 shows three possible approaches to parallel ray-casting. According

to the form of parallelism that is exploited we call these algorithms ray-, beam-

or slice-parallel.
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a) Ray-Parallel b) Beam-Parallel c) Slice-Parallel

Figure 45: Three di�erent approaches to parallel ray-casting. Shaded voxels
are processed simultaneously. The dashed arrows indicate in what direction
the algorithm proceeds during subsequent timesteps.

In the ray-parallel approach, all voxels along a ray are processed simul-

taneously (the shaded voxels in Figure 45a). The algorithm proceeds ray by

ray in scanline order (the thick arrow in Figure 45a). The Cube-3 architec-

ture, conceptually shown in Figure 46, implements ray-parallel ray-casting

[PKC94, PWK94, HMK+95]. Ray-parallel processing allows for an e�cient

binary-tree implementation of compositing (indicated by VCUs in the �gure).

However, the simultaneous access to all voxels along a ray requires global bus

between the volume memory and the rendering pipelines. The high bandwidth

requirements for this processor-memory bus ultimately limit the performance

and the scalability of the architecture.

An alternative to operating on all samples of a single ray is to simulta-

neously operate on samples of several neighboring rays [Chi93]. Depending

on how the algorithm proceeds, we call these approaches beam-parallel (see

Figure 45b) or slice-parallel (see Figure 45c). The beam-parallel ray-casting

approach follows a group of rays by fetching consecutive beams in the major

viewing direction [PWK95].

The slice-parallel approach, shown in Figure 45c, processes consecutive
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Figure 46: The Cube-3 (a) and Cube-4 (b) Basic Architectures.

data slices that are parallel to a face of the volume dataset. This processing

order appears similar to multipass resampling [DCH88] or object order com-

positing algorithms [Wes90]. However, in addition to the object-order data

traversal we incorporate all advantages of fully-pipelined ray-casting into the

algorithm.

The primary result of beam- or slice-parallel processing is the direct connec-

tion of the memory to the rendering pipelines. Cube-4, described in Chapter 8

and Chapter 9, has only local, �xed-bandwidth connections between process-

ing units. This is conceptually illustrated in Figure 46b. A pixel-bus collects

and aligns the pixel output from the compositors. Because only pixels are

being globally transferred, Cube-4 is scalable to high dataset resolutions.
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6.8 Summary

In this chapter, we �rst discussed the basic design of a high-performance mem-

ory system using a set of parallel, interleaved memory modules. We have shown

that low-order interleaved memory is inadequate for the requirements of real-

time volume rendering because consecutive accesses with stride not equal to

one lead to access conicts and worst case performance.

We presented two memory organizations that interleave blocks or vectors

of voxels across a set of parallel memory modules. We argued that vector

memory systems provide scalability of performance with increased memory

parallelism. We then presented a vector memory system using a linear skewing

of the address space that allows for conict-free access to any beam of voxels.

This skewed memory system is the basis for all Cube architectures.

We transformed the fully pipelined ray-casting algorithm of the previous

chapter into an architecture with several parallel rendering pipelines. Finally,

we discussed three di�erent approaches to parallel ray-casting. Depending on

the order of data access, we call these approaches ray-, beam-, or slice-parallel

ray-casting. The following chapters introduce three architectures based on

each of these parallel ray-casting algorithms.



Chapter 7

Cube-3: The Ray-Parallel

Architecture

This chapter gives an overview of the ray-parallel dataow of Cube-3. Sec-

tion 7.1.1 introduces a new method to use the coherence between neighboring

discrete rays during interpolation. Because of the discrete steps along the rays,

a naive interpolation scheme would use a sub-optimal neighborhood around

the sample location. We discuss an alternative solution, called sheared tri-

linear interpolation, that prevents this problem. Section 7.1.2 shows how ABC

gradient estimation is integrated into the ray-parallel dataow of Cube-3.

In Section 7.2 we present results of experiments using the proposed

sheared tri-linear interpolation and ABC gradient estimation methods. Sec-

tion 7.2.1 presents a comparison between image-order ray-casting, template-

based ray-casting with traditional tri-linear interpolation, and template-based

ray-casting with sheared tri-linear interpolation. Section 7.2.2 contains a com-

parison of image errors between 6-, 10-, 12- and 26-neighborhood ABC gradient

estimation methods.
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Section 7.3 presents the Cube-3 architecture. Its main architectural fea-

tures are the de-skewing network between memory and rendering pipelines, the

distributed 2D skewed bu�er to facilitate access to voxels along rays, and the

folded binary tree for compositing. Finally, in Section 7.4, we discuss the key

problems that inhibit a cost e�ective implementation of Cube-3 in hardware.

7.1 Cube-3 Ray-Parallel Dataow

Figure 47 schematically shows the Cube-3 dataow. The volume data is stored

in a cubic frame bu�er (CFB). All the discrete rays belonging to the same scan-

line of the base-plane image reside on the same plane inside the volume, called

the projection ray plane (PRP). By fetching all voxels on a PRP and trans-

forming them accordingly into a 2D bu�er, all discrete rays can be aligned

parallel to an axis, e.g., along the vertical direction. For parallel projections

this transformation is simply a shear of beams to the left or right. For per-

spective projections each voxel belonging to a discrete ray has to be shifted

by a di�erent amount. We refer to this process as de-fanning, since diverging

rays are stored adjacent to each other in the 2D bu�er.

As soon as two PRPs are stored in two 2D bu�ers (referred to as the

above and current bu�ers in Figure 47), a tri-linear interpolation is performed

to generate sample points on continuous rays using the voxels of the cells

touched by the discrete rays as input data. The two 2D bu�ers generate one

interpolated plane of continuous rays. Three such planes, above, below and

current, are needed for local ABC gradient approximations using neighboring

rays. The samples of the rays are shaded and opacities are assigned using a

user controllable transfer function. The shaded rays are composited into a

�nal pixel color using a binary-tree implementation of compositing according
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Figure 47: Cube-3 Dataow.

to Equation 13 (see page 61 in Chapter 4). Other parallel projection schemes

can also be employed, such as �rst or last opaque projection, maximum or

minimum voxel value, and weighted summation.

7.1.1 Sheared Tri-Linear Interpolation

The key idea for interpolation in Cube-3 is to use neighboring discrete rays

for tri-linear interpolation. Voxels of totally four discrete rays are used to

interpolate one ray of continuous samples. Figure 48 illustrates this in 2D.

The samples on one continuous ray have to be interpolated using tri-linear

interpolation between samples of two discrete rays A (gray) and B (dark).

Sample S1 can be correctly interpolated using voxels from A and B, since they

form a rectangle, i.e., the rays do not make a discrete step to the left or right.

Caching of voxels for the calculation of subsequent samples greatly reduces the

data access and communication cost. However, there is a problem intrinsic to
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Figure 48: Problems with Discrete Ray Interpolation.

interpolation between discrete rays.

As soon as the discrete rays step to the left or right, as is the case for sam-

ples S2 and S4, the cell voxels form a parallelogram, and a straight forward

interpolation produces the wrong sample values. The white square voxels in

Figure 48a are needed to yield the correct result, but they reside on another

discrete ray. This problem is exacerbated during perspective projections (Fig-

ure 48b). The discrete rays diverge, and the correct neighboring voxels are

not being fetched from volume memory. For example, only two voxels of ray

A contribute to the correct interpolation at sample point S3. In 3D, as many

as six voxels may be missing in the immediate neighborhood of a sample point

during perspective projections.

The solution is to perform a sheared tri-linear interpolation. Tri-linear in-

terpolation is factored into four linear and one bi-linear interpolation. Instead
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of specifying the sample location with respect to a corner voxel, each 3D coor-

dinate along the ray consists of relative weights for linear interpolations along

each axis in possibly sheared voxel neighborhoods. These weights can be pre-

computed and stored in the X/Y-templates discussed in Section 5.1. Figure 49

shows the necessary interpolation steps in 3D.

Y

X

Z

 

Discrete Ray A
Discrete Ray B
Interpolated
Samples
Ray Sample
Location

a) Parallel Projection b) Perspective Projection

Figure 49: Sheared Tri-Linear Interpolation.

First, we perform four linear interpolations in direction of the major axis

(the Z-axis in Figure 49) using eight voxels of four neighboring discrete rays

inside the 2D bu�ers. These eight voxels are the vertices of an oblique paral-

lelepiped for parallel projections (see Figure 49a) or of a frustum of a pyramid

for perspective projections (see Figure 49b). Four voxels each reside on two

separate planes one unit apart, which we call the front or the back plane.

Therefore, only one weight factor has to be stored, corresponding to the dis-

tance between the front plane and the position of the ray sample point. The



CHAPTER 7. CUBE-3: THE RAY-PARALLEL ARCHITECTURE 113

resulting four interpolated values form a rectangle and can be bi-linearly in-

terpolated to yield the �nal sample value. We split this bi-linear interpolation

into two linear interpolations between the corner values and a �nal linear inter-

polation between the edge values. At the bottom of Figure 49 this is shown as

two interpolations in X-direction followed by one interpolation in Y-direction.

For parallel projections, the eight voxels surrounding the sample point are

arranged in an oblique parallelepiped, as shown in Figure 49a. For perspective

projections, the surrounding voxels may form the frustum of a pyramid with

parallel front and back planes as in Figure 49b. Due to the divergence of rays

towards the back of the dataset, the volume spanned by this frustum increases,

thereby reducing the precision of the tri-linear interpolation. However, we

found that the distance between neighboring discrete rays at the end of the

volume never exceeded two voxels for a 2563 dataset with 600 �eld-of-view

angles. Furthermore, in typical datasets the samples at the back of the volume

have little inuence on the �nal pixel color due to compositing along the ray.

As was shown in Figure 49, the sample points corresponding to the contin-

uous rays have to be inside the polyhedron de�ned by the voxels on the four

surrounding discrete rays. When constructing the discrete rays, all continuous

rays start at integer positions of the base plane, i.e., they coincide with voxels

of the �rst slice of the volume dataset. However, as Figure 50a shows, using

these rays during ray-casting e�ectively reduces the tri-linear interpolation to

a bi-linear interpolation, because all sample points along the ray fall onto the

front planes of the parallelepipeds or pyramid frustum.

Using X and Y integer positions on the base-plane we can allow an o�set

from the base-plane in major direction as a degree of freedom and are able

to perform sheared tri-linear interpolations (Figure 50b). For o�sets in major

direction that are too big, as shown in Figure 50c, some of the samples along
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Figure 50: Variable ray o�sets in major direction and maximum o�set calcu-
lation.

the rays may fall outside the bounding box de�ned by the discrete rays.

In order to get an upper bound for admissible o�sets, we have to understand

how steps in non-major direction along discrete rays occur. Figure 51 shows

the situation in 2D. The view vector is split into a dx component along the

X-axis (dx and dy in 3D) and a unit vector in direction of the major axis

(the Y-axis in Figure 51). Stepping in direction of the major axis, we add the

viewing vector to the current sample position at Sn in order to get the new

sample position at Sn+1.

Suppose that the addition of dx at point Sn leads to a step of the discrete

rays in x direction. This step can only occur if Sn has a relative x o�set with

respect to the lower left corner voxel of more than 1 � dx for positive dx (or
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Figure 51: Maximum O�set Calculation.

less than 1 + dx for negative dx). In other words, sample Sn was inside the

rectangle of size dx by 1 shown in Figure 51. However, only the shaded region

of this rectangle contains sample positions inside the parallelepiped de�ned by

the corner voxels. Taking the smallest side in major axis as the worst-case,

this means that in-range samples have a maximal relative y o�set of no more

than 1� dx for positive dx (no less than 1 + dx for negative dx).

Since we step with a unit vector in the direction of the major axis, all rela-

tive o�sets along the ray are determined by the o�sets of the �rst ray samples

from the base-plane. The above argument easily extends to 3D, making the

maximum allowed o�set in direction of the major axis:

min(1� dx; 1� dy); dx; dy � 0

min(1 + dx; 1� dy); dx < 0; dy � 0

min(1� dx; 1 + dy); dx � 0; dy < 0

min(1 + dx; 1 + dy); dx; dy < 0; (27)

where dx and dy are the components of the viewing vector in x and y direction,

respectively. Notice that for 450 viewing angle dx and dy are 1, yielding an
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o�set of 0 and bi-linear interpolation as in Figure 50a. This fact will be of

importance when discussing the results in Section 7.2.

In our implementation we cast a single ray from the origin of the image

plane onto the base-plane using uniform distance between samples and choose

the o�set in major direction of the �rst sample after penetration of the base-

plane. If necessary the o�set is iteratively reduced until it satis�es the above

condition. This leads to view dependent o�sets in major direction and to

varying resampling of the dataset.

Section 7.2 presents comparisons between image order ray-casting using

a view independent sampling rate along the rays, tri-linear interpolation em-

ploying equation 1 using the correct voxels, and the proposed sheared tri-linear

interpolation among discrete rays. The next section describes the method for

correct orthogonal gradient estimation using 12 samples on neighboring rays.

7.1.2 ABC Gradient Estimation

In order to avoid temporal aliasing due to base-plane switching and to get

gradient directions that are parallel to the main axes of the volume coordinate

system, we use the 12-neighborhood gradient with two additional bi-linear

interpolations to get samples that are perpendicular to the base-plane (see

Section 5.2 in Chapter 5).

In the case of perspective projections, the front of each PRP is uniformly

sampled with n rays one unit apart. As the rays diverge towards the back of

the volume, the distance between rays increases, and the gradient estimation

becomes less accurate. However, because of the usually small distance between

rays and due to the averaging nature of shading, classi�cation and compositing,

these e�ects do not inuence image quality for typical datasets.
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With the gradient estimation and light vector directions, the sample inten-

sity can be generated using a variety of shading methods (e.g., using lookup

tables [LL94]). Opacity values for compositing are generated using a trans-

fer function represented as a 2D lookup table indexed by sample density and

gradient magnitude [Lev88].

7.2 Cube-3 Analysis

We implemented the di�erent interpolation and gradient estimation methods

in software and conducted several experiments. The �rst program, VolRen

implements traditional image order volume rendering. Rays are cast from

the image plane into the volume and sampled at uniform steps. The tri-

linear interpolation is performed according to Equation 1 using the correct

8-neighborhood around sample points. The gradient is estimated using central

di�erences of tri-linear interpolated values in a 6-neighborhood around each

sample.

The second program, True3D, uses our real-time discrete ray-casting

method, but instead of performing sheared tri-linear interpolation it fetches

the exact 8-neighborhood around each sample point. The last program,

Sheared3D, implements the same algorithm but with sheared tri-linear in-

terpolation. Both True3D and Sheared3D can use any of the 6-, 26-, 10- or 12-

neighborhood gradient methods for comparison purposes. For the implementa-

tion of these algorithms we used the VolVis volume visualization system, devel-

oped at the State University of New York at Stony Brook [ASK92, AHH+94].
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7.2.1 Tri-Linear Interpolation Comparison

First we compare images resulting from Sheared3D to results obtained from

VolRen and True3D. The normal approximation method used for Sheared3D

and True3D was the 12-neighborhood gradient estimation.

The dataset, a CT study of a cadaver head of size 256� 256� 225 voxels

at 8-bit per voxel, was taken on a General Electric CT Scanner and provided

courtesy of North Carolina Memorial Hospital. All programs use the same

shading model. The opacity transfer function maps voxel values below 80 to

� = 0, has a linear ramp for � from 0 to 0:75 for values between 80 and 100,

and assigns � = 0:75 to values above 100. We chose this particular transfer

function to classify bone in the dataset as opaque in order to try to maximize

the display of aliasing e�ects on the forehead of the CT skull.

For the experiments we rotated the dataset by 700 around the horizontal

axis with respect to the world coordinate system. During animations we ro-

tated it around a vertical axis between 00 and 900 in steps of 50. As error

measure between the resulting images we use the average Euclidean distance

of RGB values between corresponding pixels. Figure 52 shows the dataset

rotated by 450 around the vertical axis. The left image was generated using

Sheared3D and the image on the right is the di�erence image, mapped to

gray-scale, comparing the corresponding Sheared3D and VolRen images for

this rotation angle.

Figure 53 shows the relative Euclidean error in percentage between images

from Sheared3D and VolRen and between Sheared3D and True3D, respectively.

The comparison with VolRen (top curve) shows how the error raises towards

450 rotation angle and reaches a minimum at 00 and 900. The peak at 450 is

due to the di�erent sampling distance along the ray, which is by
p
3 bigger

for discrete line stepping (see Chapter 5). Furthermore, due to the o�set
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Figure 52: Dataset rendered with sheared tri-linear interpolation (left) and the
di�erence image to traditional volume rendering (right) for 45o rotation angle.
This is the worst case for sheared tri-linear interpolation.

considerations explained in Section 7.1.1, our algorithm performs only bi-linear

interpolation as opposed to the the tri-linear interpolation in VolRen.

The comparison to True3D shows zero error for 450 because both algo-

rithms perform bi-linear interpolation and use the same gradient estimation

technique. The relative error in percent compared to VolRen stays below 1:3%,

and compared to True3D it stays below 0:3%.

7.2.2 ABC Gradient Estimation Comparison

For the comparison of the di�erent ABC gradient estimation techniques, we

use a voxelized model of a sphere as dataset. The sphere is scan-converted

into a 32 � 32 � 32 dataset using the volume sampling method described

in [WK93, WK94, Wan95]. The surface intersection points are obtained by
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Figure 53: Sheared Interpolation Error in Percent.

thresholding, i.e., as soon as a certain sample value along each ray is exceeded

we calculate the gradient at that point. Each gradient is compared to the true

geometric surface normal. As error measure we use the magnitude of angular

di�erence between two vectors. All di�erences are accumulated and averaged

over all surface intersection points.

Figure 54 shows the results of rotating the sphere around a vertical axis

between 00 and 900 in steps of 50. The top two curves compare the analytic

normal with the 26- and the 6-neighborhood gradient, respectively. The error

increases towards 450 rotation angle due to the non-orthogonality of the gra-

dient directions which reaches a maximum at 450. Although the 26-gradient

shows a little higher error magnitude, the di�erence between these two meth-

ods is not signi�cant.
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Figure 54: Average Error Magnitude for ABC Gradient Estimations Compared
to the Analytic Normal.

The second curve from the bottom in Figure 54 shows the comparison of

the analytic normal with the 10-neighborhood gradient estimation. The er-

ror magnitude is signi�cantly smaller than for the other gradient methods.

The error also increases towards 450 rotation angle. This is due to the dif-

ferent distances between samples that are used for the gradient calculations

in the three orthogonal directions. The bottom curve shows the error of the

12-neighborhood gradient when compared to the analytic normal. The curve

remains constant for all viewing directions, and the error magnitude remains

around 30 which is substantially lower than for the other ABC gradient esti-

mation techniques.

Figure 55 shows how the error propagates around the sphere for rotation
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Figure 55: Error magnitude of comparing surface normals of 10- (Top) and
26-neighborhood gradients (Bottom) to the true analytic normal of the vox-
elized sphere. Notice the jump of regions of high error for the 26-neighborhood
gradient between 45o and 50o rotation angle. Dark: 00 � jej < 8:50, Medium:
8:50 � jej < 200, Light: 200 � jej < 31:50, White: jej � 31:50. Rotation angles
(left to right): 300; 350; 400; 450; 500; 550; 600.

angles from 300 to 600 in steps of 50. Dark shaded regions indicate regions of

low error magnitude, light shaded regions indicate higher error magnitudes.

The top row shows the 10-neighborhood gradient method with a fairly regular

error transition from left to right during a switch of base-planes at 450 (center

sphere). The bottom row, depicting the 26-neighborhood gradient method,

shows a generally larger error magnitude. Additionally, the region of largest

error jumps from the right side of the sphere to the left during the switch of

base-planes. This jump leads to noticeable changes in image intensity during

object rotation, an e�ect that we described as temporal aliasing in Section 5.2.

Similar pictures for the 12-neighborhood gradient show no change in color due

to the viewing angle independence and the low error magnitude.

7.3 Cube-3 Architecture

The Cube-3 architecture is highly-parallel and pipelined [PKC94]. Figure 56

shows a block diagram of the overall system. The CFB is a 3D memory
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organized in n dual-access memory modules, each storing n2 voxels using the

special 3D skewed organization described in Section 6.4. PRPs are fetched as a

sequence of voxel beams and stored in consecutive 2D skewed bu�ers (2DSB).

A high-bandwidth interconnection network, the fast bus, allows the alignment

of the discrete rays on the PRP parallel to a main axis in the 2DSB modules.

Ray ProjectionFrame Buffer ABC Shading

TRILIN2D Skewed BufferCubic Frame Buffer

Projection
2D Warping

Shading

Discrete Ray Fetch

Tri-Linear
Interpolation

Parallel Beam FetchPRP

Cone (RPC) Units

(2DSB)(CFB)

Fast
Bus

Figure 56: Cube-3 System Overview.

Three 2DSBs are used in a pipelined fashion to support sheared tri-linear

interpolation. Aligned discrete rays from 2DSBs are fetched conict-free and

placed into special purpose Tri-Linear Interpolation (TRILIN) units. The re-

sulting continuous projection rays are placed onto ABC Shading Units, where

the gradients are estimated and each ray sample is converted into both an

intensity and an associated opacity value according to lighting and data seg-

mentation parameters. These intensity/opacity ray samples are fed into the

leaves of a Ray Projection Cone (RPC). The RPC is a folded binary tree that

generates in parallel and in a pipelined fashion the �nal pixel value using a
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variety of projection schemes on the cone nodes. The resulting base-plane

pixel is transmitted to the host where it is 2D transformed (warped) onto the

viewing plane. The result is stored in the 2D frame-bu�er.

The parallel conict-free memory architecture of Cube-3 reduces the mem-

ory access bottleneck from O(n3) per projection to O(n2) and allows for very

high data throughput. For a dataset size of 5123 16-bit voxels we estimate a

performance of up to 30 frames per second. Such a system would require 8

boards and a custom fabricated backplane.

7.4 Problems with Cube-3

There are several implementation issues of Cube-3 that make a practical real-

ization di�cult:

Fast Bus: The global Fast Bus must transfer all of the dataset voxels between

memory and processing units for every frame. The bandwidth require-

ments for this bus scale with O (n3), n being the dataset resolution in

one dimension. This is the biggest bottleneck of the Cube-3 architecture.

Size: A 5123 Cube-3 implementation requires 512 DRAM chips for the CFB,

2n or 1024 SRAMs for the 2D skewed bu�er (2DSB), 2 � 512 inter-

face chips to the Fast Bus, 512 combined interpolation/shading units

(LEAF), a total of 1023 Ray Projection Cone (RPC) nodes, and several

addressing, control and multiplexor units. Using a VLSI implementation

for the LEAF and RPC nodes this corresponds to 16 boards with about

350 chips per board.

Datapath Complexity: The datapaths of Cube-3 are very complex. The

Fast Bus requires 512 wires running at 125 MHz and spanning 8 boards.
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The RPC nodes are connected in a wrap-around binary tree fashion

leading to problems at chip and board boundaries.

Control Complexity: A major problem is the control of the Fast Bus oper-

ation, namely how to distribute the control signals from the host to the

numerous Fast Bus multiplexors. The switching operations inside the

RPC change with every ray and it is unclear on how to centralize this

control.

Scalability: Due to the binary tree nature of the RPC the scalability of Cube-

3 is limited to powers of 2. A 10243 machine requires more than 32 boards

due to the increased RPC complexity. Furthermore, with current tech-

nology it is inconceivable to build a Fast Bus with 1024 wires spanning

those 32 boards.

7.5 Summary

This chapter presented the Cube-3 ray-parallel architecture. Using templates

and shearing or de-fanning of beams, 2D projection ray planes of voxels are

fetched from the volume dataset. Sheared tri-linear interpolation among voxels

of neighboring rays produces interpolated samples which are used during ABC

gradient estimation. A folded binary tree of compositors is used to generate

the base-plane pixel.

Using software simulations we compared the proposed methods to tradi-

tional image order ray-casting. The error of using sheared tri-linear interpo-

lation instead of performing image order ray-casting is below 1:3% relative

di�erence in Euclidean distance of the resulting image pixels. We showed

that use of 12-neighborhood gradients instead of 6-, 10-, or 26-neighborhood
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gradients minimizes the average error compared to analytically computed nor-

mals. The 12-neighborhood gradient prevents temporal aliasing that arises

from switching base-planes during object rotations.

We presented a list of problems related to the hardware complexity of

Cube-3. It has been our goal to address these issues, mainly to simplify the

datapath and control logic, decrease the machine size, and enhance the scal-

ability. The Cube-4 architecture, presented in the remainder of this thesis,

is the result of this process. Cube-4 adequately solves all of the problems of

Cube-3 and satis�es all of our project goals.



Chapter 8

Cube-4: The Beam-Parallel

Architecture

The main focus of this chapter is a description of the Cube-4 beam-parallel

dataow that leads to local, static, and �xed bandwidth memory-processor

and inter-processor connections. The dataow description in this chapter is

not mathematically tight and rigorous, but rather descriptive and appealing

to the intuition of the reader. Throughout the development of this project

we established our techniques by practical example and experimentation. The

explanation of the Cube-4 beam-parallel dataow is no exception. However,

we give a formal description of the Cube-4 slice-parallel dataow in the next

chapter.

To simplify the explanation, we �rst focus on a hypothetical example. We

assume orthonormal projection and that we can fetch un-skewed beams from

the memory without access conicts. We call the resulting dataow the un-

skewed beam-parallel dataow, and it enhances the general understanding of

beam-parallel processing.

127
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In Section 8.2 we present the actual beam-parallel dataow using our

skewed memory organization. The main complication arises from the skew-

ing di�erence between successive beams that has to be corrected at every

pipeline stage. However, in beam-parallel processing we do not attempt to

deskew the data globally, but rather locally for small processing neighbor-

hoods. The successive scanlines of base-plane pixels are still output in skewed

order. Deskewing in 2D amounts to a simple address re-mapping inside the

frame-bu�er.

Section 8.3 presents the Cube-4 beam-parallel architecture. The beam-

parallel dataow results in localized, �xed connections between memory, tri-

linear interpolation, shading and compositing units. Instead of global voxel

communication over a fast bus, Cube-4 uses a simple, easy to implement pixel

bus with only moderate bandwidth requirements.

In Section 8.4 we show that the performance of Cube-4 is mainly limited

by the access speed of DRAM memories. The dataow is simple and regular.

It allows parallel processing and pipelining to be fully exploited at each stage.

8.1 Un-skewed Beam-Parallel Dataow

Suppose we have a CFB organization that allows for conict-free parallel access

to any beam of voxels in X, Y and Z direction. Since we project each projection

ray plane (PRP) in base-plane scanline order, we can fetch each PRP using

this parallel beam access mechanism by following the steps stored in the Y

template of the discrete rays. Figure 57 shows the dataow for the simple case

of a orthogonal parallel projection in +Z. Notice the coordinate system at the

bottom of the �gure. Because of the orthogonal projection, the PRPs are all

horizontal planes and there is no step of the discrete rays in X or Y direction.
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Figure 57: Un-skewed Dataow Example.

In order to perform a tri-linear interpolation we need to fetch the eight

voxels that form a cell around each resampling location. These voxels come

from two adjacent PRPs which we call the top and the bottom PRP. In

Figure 57 the top PRP contains the black voxels and the bottom PRP the white

voxels. In order to be able to fetch beams from both PRPs during the same

timestep we need to bu�er one of them. This can trivially be accomplished by

using a �rst-in-�rst-out (FIFO) bu�er with the same depth as the PRP (i.e.,

depth n) connected to the memory modules of the currently fetched PRP. We

discuss these and other hardware aspects of the design in Section 8.3.

Both top and bottom PRPs are fetched by accessing their beams from front

to back, i.e., starting at the base-plane and proceeding in +Z direction into

the CFB. In Figure 57 this corresponds to fetching the beams from the right

side of the PRPs towards the left. The arrows in Figure 57 correspond to

the data movement that takes place at each timestep. The arrows going from

the right side of the PRPs correspond to fetching the beams from the CFB

into the tri-linear interpolation units. We call the four voxels that are fetched

directly from memory the back face of the interpolation cell.

The voxels from all the back faces are moved to the front faces inside
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the tri-linear interpolation units at every cycle. Notice that neighboring cells

share four voxels that have the same X coordinates. The data movement from

memory and inside the tri-linear interpolation units can be implemented with

�xed and local datapath connections. The tri-linear interpolation units are

internally pipelined so that n of them produce a set of n interpolated samples

per timestep. This can be easily achieved by factoring one tri-linear into seven

linear interpolations.

In Figure 57 the currently interpolated samples are shown as black dots

and are sent with straight datapath connections to the ABC bu�ers of the

gradient estimation units. The middle plane of the three ABC bu�ers is the

current bu�er (gray dots), whereas the lowest plane is the below bu�er (white

dots). The dataow between the bu�ers follows the same pattern as that of

the top and bottom PRPs, i.e., the ABC bu�ers can easily be implemented

using a similar FIFO bu�ering. Since the above samples come directly from

the tri-linear interpolation units we do not need to store them (contrary to the

drawing in Figure 57), but we need only two FIFO bu�ers for the current and

below planes.

To estimate the gradient around a given sample location of the current

bu�er, we use two samples along the direction of the ray from the current

bu�er, two samples inside the current plane perpendicular to the direction of

the ray from neighboring gradient estimation units, and two samples from the

above and below bu�ers. Notice that the above and below samples around

the current sample location have an additional delay of one timestep over the

samples of the current plane. Taking simple di�erences between these samples

yields a 6-neighborhood gray-level gradient estimation. Using a pipelined im-

plementation of the required central di�erence calculations and n ABC gradi-

ent units in parallel we can estimate n gradients around the n sample locations
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of the current bu�er at every timestep.

After the gradient estimation follows the shading of the samples, not shown

in Figure 57. With the gradient and the light vector description we produce n

shaded samples of n continuous rays per timestep. This assumes that we are

able to perfectly pipeline the shading calculations, which may be non-trivial for

higher order, e.g., Phong, shading models. However, our simulations show very

satisfactory results using a simple di�use shading model. Other researchers

have proposed fully pipelined Phong shading architectures [Kni93].

Once we are presented with n shaded samples at each timestep, we have

to generate the �nal base-plane pixel values. In our simple example we get

n samples contributing to n pixels of a base-plane scanline at every timestep.

After n timesteps we have generated all pixels that fall on the current base-

plane scanline. In order to generate these �nal pixel values we perform alpha

blending or compositing, in this case in front-to-back order, using an opacity

lookup table (transfer function) and the shaded sample value. In our exam-

ple all samples ow straight into the compositing units. We can use simple

accumulating adders to perform the compositing, yielding n �nal base-plane

pixel values every n timesteps. Operations like �rst/last opaque, maximum or

average projection can also be implemented in the compositors.

As a last step we have to transmit the base-plane pixels to the host where

the transformation and resampling onto the view-plane is performed. Since

in our example we get n base-plane pixels every n timesteps we can easily

transmit one pixel per timestep to the host where they are bu�ered before

the �nal 2D warp. In general this is true if the base-plane has extent n � n.

However, in the worst case the base-plane can have extent 2n � 2n for a

viewing angle parallel to a main diagonal of the CFB. That means we have

to communicate 4n pixels during n timesteps to the host. This can either
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be accomplished by operating it at four times the speed with which Cube-4

operates using a 16-bit bus or by making the datapaths four times as wide.

Therefore, the pixel bus becomes 64-bit wide, a format supported by several

standard bus protocols.

In this example we assumed that we can fetch beams of voxels in parallel

and conict-free out of the CFB. This can not be accomplished with regular

memory addressing. It is easy to see that a straight forward memory scheme

would lead to access conicts for at least two of the three major directions of

the CFB. Notice, however, that it may be conceivable to implement such a

memory without resorting to the linear skewing that we use in Cube-4. The

next section describes the actual Cube-4 algorithm, that uses a simple linear

skewing mechanism in order to guarantee conict-free access to any beam

inside the CFB, independent of the viewing direction. Although the datapath

connections do not follow the same �xed pattern, they remain local and short

as in this un-skewed example.

8.2 Skewed Beam-Parallel Dataow

The beam-parallel ray-casting algorithm discussed in Section 6.7 requires

beams of voxels to be fetched from the CFB memory. Since we project PRPs in

base-plane scanline order, we can fetch each PRP in n cycles using the parallel

beam access mechanism provided by the skewed memory organization. Beams

are fetched according to the steps stored in the Y template of the discrete rays.

The overall conceptional dataow is illustrated in Figure 58. The data con-

nections are symbolized by arrows and indicate the ow of voxels and samples.

A very important aspect of the algorithm is that these data connections are

�xed and remain unchanged during subsequent cycles.
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Figure 58: Skewed Beam-Parallel Dataow.

Figure 59 shows two planes of voxels inside the skewed CFB memory. The

numbers in the planes indicate the x coordinate of a voxel that are read from

module k given certain y and z coordinates. Notice that voxels from neigh-

boring beams have a di�erent order of x coordinates (the so-called skewing

di�erence) as can be seen for beams B1 and B2 or B1 and T1. This has a

major impact on the data connections of the Cube-4 architecture as illustrated

in Figure 58.
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Figure 59: 3D skewing. Numbers indicate x coordinate of voxels stored in
module number k = (x + y + z)mod4.
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Before going into detail, we give a brief overview of the dataow. It starts at

the left of Figure 58, where two beams are fetched from two consecutive PRPs

(called the Bottom and Top PRPs) and sent to TRILIN units for tri-linear

interpolation. The TRILIN units generate a beam of tri-linearly interpolated

samples that is stored in the above bu�er of the ABC shading units. Together

with the current and below bu�ers, which contain previously interpolated sam-

ples, these bu�ers output three beams of samples that are fetched by the ABC

gradient estimation units. These units estimate the gradient around each re-

sample location, perform shading and classi�cation on a beam of samples, and

send the results to the compositing units for composition. The compositing

units work on samples of n rays in parallel and perform one composition step

for every ray per clock-cycle. The following sections look at each of these steps

in more detail.

8.2.1 Tri-Linear Interpolation

Every clock cycle, two beams of voxels are fetched by the TRILIN units from

the Bottom and Top PRPs. Figure 59 shows that these two beams (e.g., B1

and T1) have a skewing di�erence of one. In other words, the x coordinates

of voxels between any two PRPs di�er by one in any memory module k. This

skewing di�erence has to be corrected such that the TRILIN units at position k

get the voxels with the same x coordinate. We achieve this by having straight

data connections and connections with a shift of one in negative k direction

between the Top and Bottom PRPs and the TRILIN units, respectively (see

Figure 58). To guarantee that all TRILIN units have access to the correct

8-voxel neighborhood around a resampling location, the voxels of the beams

make a shift of one position in positive k direction when they move from the so

called back face to the front face inside each TRILIN unit. A consequence of
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the �xed connections between the CFB and TRILIN units is that the resulting

interpolated beams of sample values are still skewed with a similar skewing

pattern as in Figure 59.

8.2.2 ABC Gradient Estimation

To estimate the gradient around a given sample location, three pairs of voxels

in the directions of the CFB are required around the sample location. The

actual di�erences in all directions can then be computed by taking central

di�erences. For the gradient di�erence in major direction, it is necessary to

have access to two beams from the current bu�er that are two clock cycles

apart. During the current cycle we can access three beams from the above,

current, and below bu�ers for the other two gradient di�erences.

Figure 58 shows that three beams are output simultaneously by the ABC

bu�ers. To be able to have �xed data connections between the ABC bu�ers

and the ABC gradient estimation units, the beams from the current bu�er

have to be shifted one position in positive k direction during forwarding inside

the ABC units. This shift can be explained using the same arguments as for

the shifting inside the TRILIN units.

The beams from the above and below bu�er have to be delayed by one

cycle in order to be aligned with the middle beam from the current bu�er.

This extra delay takes care of the skewing di�erence between the beams that

are output by the above and current bu�ers (compare beams T1 and B2

in Figure 59), whereas the skewing di�erence between the beams from the

below and current bu�ers is increased to two (compare beams T2 and B1

in Figure 59). Consequently, the data connections from the below bu�er to

the ABC gradient estimation units make a shift of two positions in positive k

direction to eliminate this skewing di�erence.
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With the correct 12-neighborhood available in the ABC units, we are able

to compute the gradient di�erences and produce a complete beam of shaded

voxels every clock-cycle. This assumes that we can perfectly pipeline the

shading calculations, which may be non-trivial for higher order, e.g., Phong,

shading models. However, our simulations show very satisfactory results us-

ing a simple di�use shading model. Other researchers have proposed fully

pipelined Phong shading architectures [Kni93]. As part of our proposed re-

search, we would like to investigate the use of deferred shading and texture

mapping techniques in the context of beam- and slice-parallel architectures

[DWS88, FPE+89, MEP92]. The sample and gradient values are available

inside the ABC units and can be used for opacity lookup for subsequent com-

positing.

8.2.3 Compositing

The last stage of the Cube-4 architecture performs the composition operations

of samples along the rays. Because the beams of shaded samples that are out-

put by the ABC units are still skewed, the composition of a single orthogonal

ray can not be done in a single compositing unit. Each sample point of the ray

has to be composited in a di�erent compositor. Looking at the skewing di�er-

ence between two consecutive beams we see that the temporary compositing

results of an orthogonal ray have to be moved to the next compositing unit in

positive k direction for each consecutive composition step.

So far the dataow example has focused on an orthogonal projection. In

the following sections we explain the consequences of non-orthogonal parallel

and perspective projections.
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8.2.4 Steps in X and Y

Steps of the viewing rays in X and Y direction inuence the skewing di�erence

between subsequent beams. Discrete steps in X only a�ect the compositing

units where the actual rays are composited, whereas steps in Y inuence the

interpolation and gradient estimation stages. For example, for positive steps

in Y the skewing di�erence between consecutive beams becomes two (compare

beams B1 and T2 in Figure 59). In order to keep the simple �xed data

connections between the CFB and the TRILIN units, the voxels from the

back face have to make a di�erent shift as they move to the front face inside

the TRILIN units. For negative steps in Y they are forwarded straight and for

positive steps in Y they are shifted by two positions in positive k direction.

Apart from di�erent internal forwarding of voxels inside the TRILIN units,

a positive or negative step in Y also results in a sheared 8-voxel neighborhood

for tri-linear interpolation. This is because the y coordinates of voxels in the

back face of the TRILINs are either one unit in Y direction higher or lower

than their counterparts in the front face. This can be corrected by using

sheared tri-linear interpolation (see Section 7.1.1), but only in Y direction.

The sheared tri-linear interpolation is a disadvantage, which will be corrected

in the slice-parallel architecture presented in the next chapter.

The skewing pattern inside the ABC bu�ers is similar to that of the PRPs.

It a�ects the forwarding of samples of the current plane inside the ABC units

the same way as it inuenced the forwarding inside the TRILIN units. Fig-

ure 60 shows that the component of the gradient in the direction of the ray

is slanted with respect to the other two components because of the steps in

Y of the interpolated samples. Following the discussion in Section 5.2 (Chap-

ter 5), we need to perform two bi-linear interpolations in Y direction to es-

timate the 12-neighborhood gradient. The access to the additional samples
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Figure 60: 12-neighborhood Gradient Correction.

from neighboring rays requires additional datapath connections between the

shading units.

8.2.5 Projection in Reverse Major Direction

Stepping in reverse major direction inuences the forwarding of voxels inside

the processing units. Instead of forwarding in positive k direction for none

or positive steps in Y it becomes necessary to forward in negative k direction

for none or negative steps in Y. This results in additional and bi-directional

data connections between processing units. However, this can be avoided by

performing back-to-front compositing inside the compositing units rather than

front-to-back compositing. This complicates the hardware implementation of

the compositing units, but the datapaths remain una�ected.

8.2.6 Perspective Projection

The divergence of perspective rays in X direction can be corrected during com-

positing of the rays. The way in which the compositing results are forwarded

between the di�erent units is di�erent for each ray. Some compositing units

may perform unnecessary work because not all of the samples between neigh-

boring perspective rays are used. The divergence of rays in Y direction has to
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be dealt with more carefully. Because PRPs may diverge by more than one

unit in Y direction, the skewing di�erence between them becomes too big to

be corrected by the �xed datapaths of Cube-4. To perform correct interpola-

tion and gradient estimation during perspective projections it is necessary to

always fetch one PRP that is one unit lower followed by one PRP that is one

unit higher in Y direction. This is shown in Figure 61a.

a) b)

Below PRP

Above PRP

Current PRP
Next Ray

Current Ray

Previous Ray

Next Ray

Current Ray

Figure 61: a) Divergence of rays during perspective projection. b) Diverging
perspective rays with unused beam inbetween.

The shaded squares indicate the beams of three PRPs that need to be

fetched in order to calculate the current ray. Only some beams can be shared

between the current, next, or previous rays. This may lead to a performance

drop by a worst-case factor of three per base-plane projection. However, this

is seldom the case because it is not unusual for perspective PRPs to diverge

by more than one beam towards the end of the dataset (see Figure 61b).

Beams can be skipped between subsequent PRPs, which is not an uncommon

situation for 5123 or higher resolution datasets. An advantage over Cube-3

ray-parallel perspective projections is the fact none of the samples diverge for

interpolation and gradient calculations.

8.3 The Cube-4 Beam-Parallel Architecture

Whereas the previous sections described the Cube-4 dataow from a con-

ceptual perspective, this section describes the Cube-4 architecture. Figure 62
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shows part of a Cube-4 implementation with n CFB memory modules, TRILIN

interpolation units, Shaders and Compositors, all connected through �xed-

bandwidth datapaths. A global pixel bus connects the compositing units and

transfers pixel data to an external host computer for post-processing and dis-

play. The shaded units in Figure 62 belong to a so called vertical module.

Thicker lines in the �gure indicate all datapath connections corresponding to

module k.

Since the TRILIN units need access to two beams from consecutive PRPs,

we include a FIFO bu�er inside each CFB module. The beam from the Bottom

PRP is output by the FIFO bu�ers whereas the beam from the Top PRP comes

directly from CFB memory. The ABC Shading bu�ers are realized by using

the output of the TRILIN units as the beam from the above plane and the

output of two FIFO bu�ers as the beams of the current and below plane.

The �gure shows all datapaths that are needed for the beam-parallel dataow

described in Section 8.2, including perspective projections.

Information for the correct operation of Cube-4 can be forwarded in the

datapath in form of additional control bits. They are summarized in Table 5.

The wrap in X or Y bit �elds indicate the exit and restart of a discrete ray

Control Signal Value Bits

Wrap in X 0,1 1
Wrap in Y 0,1 1
End of Ray 0,1 1
Step in X -1,0,1 2
Step in Y -1,0,1 2

Table 5: Cube-4 Control Information.

for non-orthogonal viewing angles. In such a situation, the compositing units
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Figure 62: Cube-4 Beam-Parallel Architecture.

output the current pixel value on the pixel bus and start compositing a new

ray. The end of ray ag indicates the end of a discrete ray and has the same

e�ect for the compositing stage. The steps in X and Y bit �elds carry the

information concerning the forwarding of voxels and samples inside each of
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the computational units. These control bits as well as the X and Y templates

can be computed inside the TRILIN units [Wes95, KM96].

We implemented the Cube-4 algorithm inside the VolVis volume visualiza-

tion system developed in our group [ASK92, AHH+94]. Parallel and perspec-

tive projections of several types of datasets achieved high image quality. The

complete Cube-4 dataow was simulated extensively in C, and we developed

behavioral VHDL code [KM96].

8.4 Performance and Scalability

The �xed datapath connections and the simple control make it very easy to

exploit parallelism and pipelining at every stage of Cube-4. The performance

is only limited by the speed of the memory, assuming that each of the compu-

tational units can be perfectly pipelined. If n is the dimension of the dataset, p

the projection rate in frames per second, the required memory access frequency

fm is:

fm = n2p:

Table 6 shows several memory access frequencies for various dataset sizes as-

suming real-time performance with p = 30 frames per second.

Dataset Size n3 Memory Access Frequency fm

1283 0.49 MHz

2563 1.97 MHz

5123 7.86 MHz

10243 31.46 MHz

Table 6: Memory frequencies for p = 30 frames per second.
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Commercial DRAMs typically have a random access frequency of fd = 8:33

MHz (assuming 120 ns cycle time). This allows for machine implementations

with dataset dimensions n � 512 using n o�-the-shelf standard DRAMs. By

clocking the DRAMs at their maximum frequency fd it is possible to reduce

the number of physical memory chips to

nd = dnfm
fd

e;

each of them storing fd
fm

times the data of the fully parallel implementation.

As an example, a 1283 machine using standard DRAMs with fd = 8:33 MHz

requires only nd = 8 physical memory chips instead of 128 for the fully parallel

version. Each of the chips stores 16 times the data of the fully parallel version.

A high-resolution implementation requires higher memory access speeds

than can be delivered by todays standard DRAMs. However, recent develop-

ments in DRAM technology have lead to faster devices [IEE92]. Synchronous

DRAMs (SDRAMs) latch the data under control of the system clock, enabling

pipelined read cycles. Enhanced DRAMs (EDRAMs) use on-chip static bu�ers

to reduce the average access time. Currently these high-speed memory devices

achieve an average access frequency of fd = 33 MHz, allowing for 10243 imple-

mentations. Future improvements in memory technology allow faster DRAM

access frequencies, thereby enabling more compact or higher-resolution Cube-4

implementations.

Table 6 assumes a fully parallel Cube-4 implementation with n memory

units and n processing units in each stage of the projection pipeline. However,

this also results in the same processing frequency fp for the TRILIN, shader

and compositor units, fp = fm. In order to signi�cantly reduce the hardware

complexity, we can increase the processing frequency and use fewer processing

units that operate on multiple data items in a time-sliced fashion. We call
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this technique partitioning or horizontal integration of the machine. Instead

of n we use n
m
processing units, where n is the dataset dimension and m the

partitioning factor. Given a projection rate of p frames per second, this results

in an increased processing frequency of:

fp = n2pm:

Figure 63 shows the tradeo� between the number of processing units per

pipeline stage, n
m
, and the processing frequency, fp, for three dataset reso-

lutions. Note that we use the number of units per pipeline stage and not the

total number of processing units. Depending on available technology it is pos-

sible to combine two or more stages of the pipeline into one physical unit, a

technique that we refer to as vertical integration of the machine.
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Figure 63: Processing frequency, fp, vs. number of units per pipeline stage,
n
m
, for three dataset resolutions. Rendering performance is p = 30 frames per

second.

It can be seen from Figure 63 that 64 units per pipeline stage running at 64

MHz su�ce to implement a 5123 machine. Using fast DRAMs such a design
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could be implemented using 128 memory chips, bringing it into the realm

of VME board sizes. Similarly, we can achieve EISA board implementations

for 2563 datasets using 8 units per pipeline stage running at 64 MHz and

16 fast DRAMs. Note that in the previous discussion we did not change the

parameter p, assuming real-time projection rates of 30 frames per second for all

tables, graphs and examples. Making p smaller further reduces the hardware

requirements.

8.5 Summary

The Cube-4 beam-parallel architecture presented in this chapter is a �rst step

towards a special-purpose scalable architecture that can deliver real-time high-

quality ray casting of high-resolution datasets.

Beam-parallel ray-casting avoids any global communication of voxels and

only requires a pixel-bus of moderate bandwidth. The resulting Cube-4 ar-

chitecture is scalable, modular in design, and has the potential of rendering

high-resolution datasets, such as 10243 16-bit voxels, at 30 frames per second.

Using the fully pipelined ray-casting algorithm presented in Chapter 5 does not

require any pre-computations and allows for 4D visualization of dynamically

changing data.

However, beam-parallel processing leads to sheared tri-linear interpolation

and some control complexity because of steps of the discrete rays. The Cube-4

slice-parallel architecture presented in the next chapter uses the correct 3D

neighborhoods for interpolation. Furthermore, the constant skewing di�er-

ence between beams along slices leads to a much simpler dataow and an

architecture with fewer datapaths. Consequently, the Cube-4 slice-parallel ar-

chitecture has the best image quality and cost-performance ratio of the three



CHAPTER 8. CUBE-4: THE BEAM-PARALLEL ARCHITECTURE 146

Cube architectures presented in this thesis.



Chapter 9

Cube-4: The Slice-Parallel

Architecture

The beam-parallel dataow model that we developed in the previous chapter

results in localized, �xed connections between memory, tri-linear interpolation,

shading and compositing units. However, beam-parallel processing requires to

use sheared tri-linear interpolation and complicates the datapaths due to the

view-dependent data traversal. In this chapter, we look at the slice-parallel

dataow. We will show that slice-parallel processing greatly simpli�es the

dataow and the resulting Cube-4 architecture.

In Section 9.1 we present the Cube-4 slice-parallel dataow, a main contri-

bution of this research. Instead of the informal explanation style used in the

previous chapter, we will use signal ow graphs (SFG) to formally specify the

slice-parallel dataow. We start by assuming parallel projection and n = m

processing pipelines and memory modules, where n is the resolution of the

dataset.

147
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In Section 9.2 we generalize our results for the case of m < n. This will al-

low us to implement the Cube-4 architecture with much fewer memory modules

and processing pipelines than the dataset resolution. Section 9.3 shows how to

implement perspective projections in the slice-parallel processing framework.

The slice-parallel dataow leads to localized, near-neighbor datapaths for

the Cube-4 slice-parallel architecture, described in Section 9.4. In Section 9.5

we show results from simulations and a prototype implementation of Cube-4 on

the Teramac, a con�gurable custom hardware machine developed by Hewlett-

Packard Laboratories. Our implementation proves the feasibility of the archi-

tecture. The measurements show linear increase of performance with increas-

ing number of rendering pipelines.

Finally, in Section 9.6 we analyze the theoretical achievable performance

which indicates real-time frame rates for up to 10243 datasets and linear scal-

ability of performance with increased parallelism.

9.1 Cube-4 Slice-Parallel Dataow

Recall from Section 6.4 that the skewing distance s is the distance by which

two beams have been shifted (mod m) relative to each other. For example,

Figure 42a shows that each beam of a slice (in volume space) has been shifted

by s = 1 (in memory space) with respect to the beam below it. This means

that, in general, beams can not be accessed from memory in the same order

they have in volume space.

One solution to the problem is to permute fetched beams by an interme-

diate interconnection network between the memory and the processing units.

This permutation of beams is called unskewing, because it reduces the skewing

distance between consecutively fetched beams to zero. This approach has been
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used in the Cube-3 architecture. However, the hardware complexity of such

a global interconnection is high and becomes prohibitive for large m, limiting

the scalability. In Cube-4 we take a very di�erent approach that does not

require any global communication except at the pixel level.

We now explain the datapaths and the resulting dataow in detail using

SFGs. A SFG is a directed graph with non-negative edge and node weights.

A node stands for an arithmetic or logic function performed with zero delay

and an edge stands for data transport. The order of operations is represented

as directed edges emanating from the node that is to be executed �rst. The

weight of the edge indicates by how many clock cycles the �rst operation must

precede the second operation. We do not show edge weights of 0. An edge may

also be viewed as a datapath from one operation to another and its weight as

indicating the number of registers included in that datapath. The width of

all datapaths is assumed to be constant. To simplify the discussion, we �rst

restrict our attention to the case ofm = n. Later, we discuss the generalization

of these results to the case of m < n.

9.1.1 Tri-Linear Interpolation

Tri-linear interpolation requires 8 voxels arranged in a 2 � 2 � 2 orthogonal

voxel neighborhood. This is equivalent to two 2� 2 voxel neighborhoods from

consecutive data slices. Figure 64 shows one slice of a 4 � 4 � 4 dataset in

volume space and in skewed memory space. For simplicity we have indicated

increasing voxel addresses along rows with consecutive letters. The neighbor-

hoods required for the bi-linear interpolation inside the slice are surrounded

by a box. Notice how the orthogonal neighborhoods are shifted and sheared

in memory space due to the skewing di�erence between beams.

Assume that we fetch consecutive beams in positive Y direction from the
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Figure 64: Bi-linear neighborhoods a) in volume space and b) in skewed mem-
ory space.

dataset. This corresponds to fetching consecutive rows in column direction

in Figure 64b. The SFG in Figure 65 shows how the data is moved between

pipeline stages. Dashed edges that leave on one side of the �gure are connected

1 2 30i i i i

0 1 2 3o o o o

c = w a + (1 - w) b

wx

wy

D D D D

a) b)

w

a b

Figure 65: a) SFG for bi-linear interpolation. Edges labeled with D indicate
that the �rst operation must precede the second operation by D clock cycles. b)
Each node performs a linear interpolation.

to corresponding edges on the other side in a wrap around fashion. Each node

in the graph performs a linear interpolation of its two inputs. The �rst stage
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performs a linear interpolation between neighboring voxels of one beam, and

the second stage performs a linear interpolation between the linearly interpo-

lated samples of two consecutive beams.

Figures 66a through 67h show how the data ows in the corresponding

hardware con�guration for the bi-linear interpolation of a 4 � 4 voxel neigh-

borhood.
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Figure 66: Bilinear Interpolation Schedule (Part I)
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Figure 67: Bilinear Interpolation Schedule (Part II)
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Each linear interpolation node is represented by a square cell that performs

the necessary arithmetic operations. To simplify the explanation, each linear

interpolation cell also contains a register that holds the two input values1.

The delay along edges is represented by a register on the datapath between

subsequent cells. The data that ows from the top to the bottom is represented

using the same letters as in Figure 64. Each new drawing corresponds to

another system clock period.

Looking at the SFG in Figure 65 and the example dataow in Figure 66

and 67 we notice some important patterns. The datapath between memory

and the �rst stage of linear interpolators is used to join two (spatially) adjacent

voxels from a beam at a time. This is achieved by a merger of adjacent voxels

inside the same beam. The datapath between the �rst and second stage of

linear interpolators is used to join data of two (temporally) subsequent beams.

Because the two beams are output in consecutive clock periods, this can be

achieved by a shift and delay.

Another important observation is that the resulting bi-linear samples are

output in skewed order. Although the skewing di�erence between input beams

has been corrected, the dataow does not attempt to de-skew the resulting val-

ues. As we will see in the following sections, this is true for all processing stages

of the Cube-4 architecture. We e�ectively defer the de-skewing of the memory

from 3D samples to 2D pixels, where it can be more e�ciently implemented

by a simple address permutation.

To perform a tri-linear interpolation, we need voxel data from two subse-

quent slices. Because voxels from the second slice are output n clock periods

later, we need to delay data from the previous slice by n cycles. Furthermore,

1An actual hardware implementation is free to use zero or more internal registers inside

each cell, depending on the required performance. A higher degree of pipelining leads to

longer latency but shorter system clock period.
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because of the skewing di�erence between beams of subsequent slices, we need

to shift the non-delayed output from the memory by one position. Figure 68

shows the complete SFG for tri-linear interpolation for n = m = 4 using the

SFG of Figure 65. The last stage of this SFG performs the linear interpolation

2i 3i1i0i

1o0o 2o 3o

wz

Bi-Linear SFG Bi-Linear SFG

n n n n

Figure 68: SFG for tri-linear interpolation and n = m = 4. Edges labeled with
n indicate that the �rst operation must precede the second operation by n clock
cycles.

between the bi-linearly interpolated samples of the two slices. Notice that

this SFG easily extends to arbitrary values of n. The interpolation weights,

indicated by wx, wy in Figure 65 and wz in Figure 68, remain constant for all

samples inside a newly interpolated slice. They can be easily pre-computed

using the template-based address generation discussed in Chapter 4.

9.1.2 ABC Gradient Estimation

The dataow for ABC gradient estimation is similar to tri-linear interpolation.

We �rst explain the dataow for the estimation of the X and Y gradient. It

requires the collection of a 3�3 neighborhood inside each slice of interpolated
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samples. Figure 69 shows a slice with 4 � 4 samples, both unskewed and

skewed.
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B
A
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A B C D
A B C D
A B C D
A B C D

a)

Figure 69: Gradient neighborhood inside a slice of interpolated samples a)
unskewed and b) skewed.

The neighborhood required for one gradient estimation inside a slice of

samples is surrounded by a box. Remember that samples are output each clock

cycle by the tri-linear interpolation stage as skewed beams. To estimate the

X gradients inside the slice (indicated by the horizontal line between samples)

we need to merge and subtract sample values that are two positions apart

inside each beam. Figure 70 shows the SFG that achieves this. The nodes

in the �rst stage simply forward their inputs to the nodes of the following

stage which compute the di�erence between their two inputs. Notice that this

SFG merges the samples the same way as the bi-linear interpolation SFG in

Figure 65, except that it needs two stages to merge samples with distance two

in X direction.

The computation of the Y gradient (indicated by the vertical line in Fig-

ure 69) requires a shift and delay of samples from beams that are two positions

apart in Y direction. Figure 71 shows the corresponding SFG. The node op-

erations are the same as in the SFG for central di�erences in X shown in

Figure 70. The shift and delay operation is equivalent to the shift and delay

required for bi-linear interpolation, except that we need to shift and delay
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Figure 70: a) SFG to compute central di�erences between samples for the X
gradient. b) Nodes either forward the inputs or compute their di�erence.

twice to merge samples from beams with distance two in Y direction.

As shown in Figure 60 on page 138, we need to compute two additional

samples by bi-linear interpolation inside sample slices for corrected gradient

estimation in Z. This additional interpolation is achieved by the bi-linear SFG

of Figure 65 applied to the samples output from the tri-linear interpolation

SFG. The weights for this interpolation are dx and dy, theX and Y component

of the viewing vector, respectively. To compute the gradient component in Z

direction, we need to choose among these corrected samples depending on the

viewing direction as illustrated in Figure 72.

In 3D there are four cases to consider depending on the sign of dx and

dy. Figure 73 illustrates this using a 2D drawing. The samples with a thick

outline in the center of the �gure represent the beam of the current slice for

which the gradient components in Z are being computed. The dashed and

shaded samples are bi-linearly corrected samples in the ahead or behind slice.

For any given sample of the current slice, there are four possible choices for
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Figure 71: a) SFG to compute central di�erences between samples for the Y
gradient. Edges labeled with D indicate that the �rst operation must precede
the second operation by D clock cycles. b) Nodes either forward the inputs or
compute their di�erence.

X

a) b)
Z

Y

Figure 72: Di�erent choices for gradient correction in Z depending on the
non-major component dy of the viewing vector. a) dy > 0 b) dy < 0

gradient estimation in Z in the ahead or behind slice, indicated by NE (North

East), NW (North West), SE (South East), or SW (South West). Table 7 lists

all valid choices for the ahead and behind slice depending on the non-major

components dx and dy of the viewing vector.

Figure 74 shows the SFG to compute and forward the corrected samples
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in the slice ahead or behind
Corrected samples

Current samples

NE

SESW

NW

Figure 73: Four possible choices among samples in the ahead or behind slice
during gradient estimation in Z for the samples of the current slice.

dx < 0 dx > 0

Ahead Behind Ahead Behind

dy > 0 NW SE NE SW

dy < 0 SW NE SE NW

Table 7: Valid choices for gradient estimation in Z between the ahead and
behind slice depending on the non-major components dx and dy of the viewing
vector.

inside each slice for gradient estimation in Z direction. The samples from the

tri-linear units are �rst forwarded through the SFG for bi-linear interpolation

to compute the additional samples for corrected gradient estimation. The

nodes at the output of this SFG act as multiplexors to select the valid corrected

samples for gradient estimation in Z according to Table 7. The �rst stage,

activated by the signal sel 0, selects between East and West samples. The

second stage, activated by the signal sel 1, selects between the North and
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Figure 74: a) SFG to compute and select corrected samples inside each slice
for the Z gradient. Edges labeled with D indicate that the �rst operation must
precede the second operation by D clock cycles. b) Nodes are either linear in-
terpolators or multiplexors to select valid corrected samples depending on the
viewing direction.

South samples (see Figure 73). Notice that the structure of the selection

stages is equivalent to the SFG for bi-linear interpolation. This is because we

are computing inside 2� 2 sample neighborhoods in both cases.

Figure 75 shows the complete SFG for ABC gradient computation. The

inputs xi are the skewed beams of samples output from the tri-linear interpo-

lation units. The samples currently output by the tri-linear interpolation stage

are input without delay as ahead samples. The ahead samples are delayed by

n cycles to yield the current samples. A delay of the ahead samples by 2n
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Figure 75: SFG for ABC Gradient Estimation. Edges labeled with n or 2n
indicate that the �rst operation must precede the second operation by n or 2n
clock cycles, respectively.

cycles produces the behind samples. All gradient computations are relative

to the current slice. The gradient components in X and Y are computed on

the current samples using the SFGs of Figure 70 and Figure 71, respectively.

The ahead and behind samples are subjected to the gradient correction and

selection using the SFG of Figure 74. The last stage in the SFG computes the

central di�erences between the gradient corrected ahead and behind samples

and outputs the gradient components in Z direction.

9.1.3 Shading and Classi�cation

Using the gradient, each sample is shaded using any of the standard local illu-

mination models. For maximum performance, we need to perfectly pipeline the
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shading calculations. Other researchers have proposed fully pipelined Phong

shading and vector normalization architectures [Kni93]. For our prototype

implementation, we use a small, lookup-table based reectance map shader

[BvS95]. It allows to implement any higher-order shading model without ex-

pensive square root units. Classi�cation is performed based on sample value

and possibly gradient magnitude using a lookup-table opacity map.

9.1.4 Compositing

The shading stage produces consecutive beams of color intensity values within

slices. In the slice-parallel dataow, the compositing stage accumulates these

intensity values to pixels stored in the base-plane. The total size of this base-

plane bu�er is (2n)2, the maximum size of a base-plane (see Chapter 5). How-

ever, this accumulation bu�er is distributed among m compositing units. The

di�culty is how to forward the intensity values along a ray to the compositing

unit that stores the intermediate base-plane pixel corresponding to that ray.

Or, alternatively, how to forward the intermediate base-plane pixel value to

the compositing unit that receives the next intensity value along the ray.

Consider a partially composited base-plane pixel that was produced after

compositing slice S. We have to forward this pixel to the compositing unit

which receives the next intensity value along the ray from the shader. Because

all rays are 26-connected in discrete space, the next sample along the ray

must come from a 3�3 neighborhood from the previous slice S�1. Using the

discrete ray-templates of the template-based ray-casting algorithm [YK92], we

can determine the position inside this neighborhood of the next intensity value

along the ray. Using Figure 76, we can determine the forwarding pattern for

all possible cases. The �gure assumes that the major viewing direction is Z

and that the dataset is stored along beams in X direction.
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Figure 76: Compositing Neighborhood.

Figure 76a shows the 3� 3 neighborhood for the case of no skewing. The

center position, surrounded by a box, indicates the current position of the

intermediate base-plane pixel. The numbers indicate the relative distance in

X to the compositing unit that receives the next sample along the ray. For

example, if the ray-templates indicate that the ray in discrete space makes

a step in positive X and Y directions, the next sample is forwarded to the

compositing unit one position in positive X direction (shown by a dashed

box in the �gure). Because of the skewing di�erence between beams inside

slices, this forwarding distance is altered as shown in Figure 76b. Finally,

Figure 76c shows the forwarding distances if we take the skewing between

slices S and S + 1 into account. Because of the forwarding distances, each

compositing unit has to be connected to three units in positive and one unit in

negative X direction. Figure 77 shows the corresponding SFG for compositing.

Notice that, due to the maximum skewing di�erences of �1 and +3 shown in

Figure 76c, a minimum of �ve rendering pipelines is required.

The resulting pixels of the base-plane are still generated in a skewed or-

der. However, pixel scanlines can easily be unskewed by a simple address-

permutation inside or when stored into the frame-bu�er.
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Figure 77: a) SFG for compositing. b) Operation of a compositing node. C
stands for front-to-back or back-to-front compositing. � is the current sample
opacity, b is the current sample value, a is the partially accumulated result,
and a0 is the new result of the current compositing operation.

9.2 Extensions for m < n

If m < n, we have to add two minor changes to the dataow presented so

far. Instead of complete beams we forward partial beams with q = n
m
samples

each. The order of partial beam access is along beams. To fetch the data

of a complete beam requires q cycles instead of one cycle. Consequently, all

delay operations on edges in the SFGs, which are needed to gather data from

consecutive beams, need to be changed from D to q.

The second change is required because of border cases between partial

beams. For example, the tri-linear interpolation units at rightmost position

m require voxels from the partial beam that will be fetched one cycle later.

Figure 78 shows how to deal with these border cases using a technique we call

beam-extension. The partial beam i, is delayed by one cycle, until the next
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Extension

Partial beam i
Partial beam (i+1)

Figure 78: Beam Extension.

partial beam (i + 1) arrives. The overlap necessary for the border cases is

available as an extension to beam i. Notice that we need to extend beams

only in the direction of partial beam access. The amount of extension depends

on the processing stage and varies between 3 and 4 data samples.

9.3 Perspective Projections

Perspective projection is nearly identical to parallel projection, except that the

interpolation stage also needs to compute averages of larger neighborhoods for

slices further away from the base-plane (cf. [LL94]). The �rst slice of data

is uniformly sampled and scaled by a factor of one, which corresponds to

shooting one ray per pixel of the base-plane. In all subsequent slices, the slices

are scaled according to the viewing transformation, and a larger portion of the

slice is sampled.

This averaging of larger neighborhoods can be implemented in hardware

using additional interpolation stages that perform a simple box-�ltering of

slices. The maximum extent of this box �lter, needed for the slice furthest

away from the base-plane, is 1 + 2 tan�, where � is half of the �eld-of-

view angle. For � < 450, or any �eld-of-view less than 900, this corresponds

to a maximum extent of 3 voxels. After samples from averaged slices have

been computed, the subsequent algorithm remains the same as for parallel
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projections.

In order to average the voxel slices, we need to compute the convolution of

each slice with a 3� 3 box �lter:

y(i; j) =
2X

k=0

2X
l=0

a(l; k) x(i� l; j � k): (28)

We can further break down the 2D convolution into:

y(i; j) =
2X

l=0

a(l; 0) x(i� l; j) +
2X

l=0

a(l; 1) x(i� l; j � 1) (29)

+
2X

l=0

a(l; 2) x(i� l; j � 2):

Each summation term in Equation 29 describes the 1D convolution of a beam

of samples with a 1 � 3 �lter. Figure 79 shows the SFG that implements

this 1D convolution. For clarity of explanation we have labeled each input or

output variable with only one index number. Dashed edges that leave on one

side of the �gure are connected to corresponding edges on the other side in a

wrap around fashion. Each node in the graph performs a multiply-accumulate

of one input and forwards the other input to the following node.

Table 8 shows the dataow during 1D convolution of the 4� 4 voxel slice

shown in Figure 64b with a 1� 3 �lter kernel. The table only shows the data

x0 and y0 of nodes in the �rst two rendering pipelines (0 and 1). At each

timestep, the data moves through the three consecutive stages of the SFG

in Figure 79. Notice how adjacent samples in each beam are merged during

consecutive timesteps. The output of the 1D convolution SFG is still skewed.

To perform a 2D convolution of each sample slice with a 3� 3 �lter kernel

we need to sum up to results of three consecutive 1D convolutions as speci�ed

by Equation 29. Figure 80 shows the resulting SFG. Because of the skewing

di�erence between the output samples of the SFG in Figure 79, we need to

delay and shift the outputs in order to add up corresponding summation terms.
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Figure 79: a) SFG for 1D convolution with a 1� 3 �lter. b) Operation of each
convolution node.

Timestep Stage x00 y00 x01 y01
0 A a0A B a0B

0 1
2
0 D a0D A a0A

1 1 A a0B + a1A B a0C + a1B
2
0 C a0C D a0D

2 1 D a0A + a1D A a0B + a1A
2 A a0C + a1B + a2A B a0D + a1C + a2B
0 B a0B C a0C

3 1 C a0D + a1C D a0A+ a1D
2 D a0B + a1A + a2D A a0C + a1B + a2A

Table 8: Timing schedule for two pipelines (0 and 1) of the 1D convolution
SFG.
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Figure 80: a) SFG for 2D convolution with a 3�3 �lter. Edges labeled with D
indicate that the �rst operation must precede the second operation by D clock
cycles. b) Operation of each convolution node.

9.4 Cube-4 Slice-Parallel Architecture

Figure 81 shows the complete top-level diagram of the Cube-4 architecture

with �ve rendering pipelines [PK96]. This is the minimal con�guration due to

the skewing di�erence for pixel exchange in the compositing stage The dataset

is stored in the multiple cubic frame bu�er (CFB) memory modules. Each

rendering pipeline contains four types of processing units: CFB memory and
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Figure 81: Cube-4 slice-parallel architecture. Bold lines indicate all data con-
nections of the rendering pipeline in the center. (CFB = Cubic Frame Bu�er,
TRILIN = Tri-Linear Interpolation Unit, Compos = Compositing Unit.)

address generation, tri-linear interpolation (TRILIN), ABC gradient estima-

tion and shading (Shader), and compositing (Compos). All datapaths have

constant width, corresponding to the word-width of a voxel (e.g., 8 or 16 bits).

The delay of data required for tri-linear interpolation and for the ABC gradient

estimation is achieved by �rst-in �rst-out (FIFO) memories.

Control of Cube-4 is very simple and can be part of the dataow. The host

downloads the viewing vector into the CFB address-generation units. The

ray templates are generated in hardware by adding the viewing vector to the

current sample location and computing the resampling weights. From there
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on, all necessary control signals travel with the data through the machine,

making centralized control unnecessary.

9.5 Simulations and Prototyping

We have extensively simulated the algorithm and architecture in C and a high-

level hardware description language (VHDL) [KM96]. Table 9 shows results

from the VHDL simulation. The table shows rendering performance in frames

per second versus the number of rendering pipelines for three di�erent dataset

resolutions. To translate the number of simulation cycles into frames per

second, we assumed a relatively low processing frequency of 33 MHz.

Dataset # Pipelines Cycles/frame Frames/sec

643 8 32,814 1,006

16 16,422 2,009

32 8,226 4,012

1283 8 262,206 126

16 131,118 252

32 65,574 503

2563 8 2,097,246 16

16 1,048,638 31

32 524,334 63

64 262,182 126

128 133,106 248

Table 9: VHDL simulation results: Rendering performance as a function of
the number of rendering pipelines.
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As a proof of concept we implemented a Cube-4 prototype on the Tera-

mac, a con�gurable custom hardware machine developed at Hewlett-Packard

Laboratories [KMS+96]. Figure 82a shows a picture of a 4-board Teramac

system.

Teramac can execute synchronous logic designs of up to one million gates

at rates up to 1 MHz [ACC+95]. The system has been built from custom

�eld-programmable logic arrays (FPGAs) packaged in large multichip modules

(MCMs). Figure 82 shows a picture of a single MCM, which carries 27 FPGAs.

Each MCMmeasures 6:13�7:4 inches, weighs approximately 3 pounds, and has
over 3000 pins. The Teramac system we used for our Cube-4 implementation

includes 8 boards, 250 MB of RAM, 32 MCMs and 864 FPGAs.

Our prototype of Cube-4 on Teramac implements the design shown in Fig-

ure 81 with �ve rendering pipelines. The implementation is capable of produc-

ing parallel color projections of 1283 8-bit per voxel datasets from arbitrary

directions. Inside the shader units, we use a lookup-table based reectance

map shading. The total logic complexity for all �ve rendering pipelines is

330K gates. Compilation of the complete design onto Teramac takes less than

one hour without user intervention.

The Cube-4 prototype generated an image of any of the 1283 datasets in

1.5 seconds at 0.25 MHz, independent of dataset complexity, transfer func-

tion, or viewing parameters. The maximum processing frequency of Cube-4

on Teramac is 0.96 MHz without any performance optimizations. Figure 83

shows volume renderings of a CT lobster dataset and Figure 84 shows volume

renderings of several other datasets. The use of di�erent opacity and color

transfer functions reveals di�erent aspects of the data.
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(a) (b)

Figure 82: a) A four-board Teramac system. b) A Teramac multichip module
(MCM) with 27 custom FPGAs routed through 39 signal layers.

Figure 83: Di�erent volume renderings of a 1283 CT lobster dataset generated
by the Cube-4 prototype on the Teramac. Each image took 0.6 seconds at 0.96
MHz processing frequency.
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Figure 84: Volume rendering images of 1283 datasets produced by the Cube-4
prototype on Teramac. Each image took 1.5 seconds at 0.25 MHz processing
frequency. a) Hippocampal pyramidal cell. b) Volume-sampled mechanical part.
c) Bullfrog ganglion cell. d) CT head, 45o rotated. e) Volume sampled sphere-
ake. f) MRI brain. Images g) through i) show the e�ect of di�erent transfer
functions on a simulated high-potential iron protein.
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9.6 Performance Analysis

The results we presented in the previous section indicate linear scalability of

performance with increasing number of rendering pipelines. In this section, we

look at the theoretical maximum performance of Cube-4. Assuming perfect

pipelining of interpolation, shading, and compositing, we can continually enter

data at the maximum possible rate, and the theoretical performance of Cube-4

is thus limited by the access speed of the memories.

If n is the dimension of the dataset, p the number of rendering pipelines,

and fp the processing frequency of the machine, the theoretical rendering rate

fr in frames per second is pfp
n3
. Figure 85 shows the frame rate fr as a function

of the number of rendering pipelines p for three di�erent dataset sizes. We

show graphs for two di�erent processing frequencies fp. The solid lines shows

graphs for fp = 33 MHz, corresponding to the cycle time of SDRAM, the

fastest currently available DRAM memory technology. The dashed lines show

performance assuming 100 MHz processing frequency. Because current DRAM

memory can not output data at this rate it has to be additionally interleaved

per rendering pipeline. This additional interleaving is a standard memory

bank arrangement as used in current general-purpose processors.

In order to allow for a compact implementation, we are currently develop-

ing an application-speci�c integrated circuit (ASIC) containing several of the

Cube-4 rendering pipelines. We have a contract with a company that will fab-

ricate such an ASIC. Preliminary estimates indicate that an ASIC containing

4 rendering pipelines requires less than 300 pins, including power and ground.

Each ASIC requires only 400K gates, and internal memory for the ABC FIFO

bu�ers of 40 K, assuming a total of 32 rendering pipelines.

We are designing a long PCI card system with 32 rendering pipelines or 8
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Figure 85: Theoretical rendering performance of Cube-4 as a function of the
number of rendering pipelines. We show graphs for di�erent dataset sizes
( = 2563;� = 5123;4 = 10243). Solid lines indicate 33 MHz processing
frequency, and dashed lines indicate 100 MHz processing frequency.

Cube-4 ASICs, 32 SRAM chips, and a PCI host interface. Such a card would

cost a few thousand dollars and provide 30 projections per second for 2563

datasets. Larger systems for higher resolution datasets supporting 30 projec-

tions per second, 16-bit per voxel, can be built, such as a workstation board

(e.g., VME size) for 5123 datasets, and multiple boards for 10243 datasets.
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9.7 Summary

In this chapter we have introduce the Cube-4 slice-parallel architecture. We

have formally described the dataow using signal ow graphs. Simple ex-

tensions to the dataow allow parallel and perspective projections of high-

resolution datasets with only a few rendering pipelines. The resulting Cube-4

slice-parallel architecture has local, �xed bandwidth datapaths. It is modular

in design and scalable in performance.

Slice-parallel algorithms have been used in various forms by other re-

searchers. Reynolds et al. [RGC87] and Lacroute and Levoy [LL94] use a

shear-warp factorization of the viewing transformation to project the volume

in a slice-parallel fashion onto the base-plane. Cameron and Underill [CU92]

and Schr�oder and Stoll [SS92] have used slice-parallel approaches on massively-

parallel SIMD machines.

Our hardware implementation of the slice-parallel ray-casting algorithm

improves on these previous results in several ways. Shear-warp algorithms use

linear 2D resampling �lters [LL94], while the Cube-4 architecture implements

accurate 3D resampling using tri-linear interpolation between data slices. Fur-

thermore, Cube-4 does not use any pre-computations and stores only one copy

of the dataset, allowing for real-time data input.



Chapter 10

Conclusions

Over the last decade, direct volume rendering has become an invaluable visu-

alization technique for a wide variety of applications. Looking at the require-

ments of these applications, we make three key observations. First, real-time

frame rates combined with interactive visual feedback during changes of the

rendering parameters is essential if volume rendering is to become the primary

visualization technique for 3D sampled or simulated datasets. Second, the

trend in acquisition devices goes towards higher resolution 3D datasets that

are acquired in a shorter period of time, possibly at real-time rates. And third,

current volume rendering software or hardware is not capable of meeting these

conicting requirements.

This dissertation describes new special-purpose architectures for volume

rendering that are capable of delivering real-time projection rates for high-

resolution datasets. We employed an experimental research approach that

goes beyond paper designs by implementing and testing hardware prototypes

on the Teramac custom computing machine at Hewlett-Packard Laboratories.

We have extensively simulated several design choices to validate many of the
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key features of each design. The result of this design process and the main

contribution of this dissertation is the Cube-4 architecture. Cube-4 meets all

of our project goals and allows for a modular implementation in hardware with

scalable performance.

In Chapter 2, we introduced the basic algorithms and acceleration tech-

niques for volume rendering. We showed that pre-processing and data duplica-

tion are common features of most software optimization techniques. However,

both of these techniques violate our project goals, which include interactive

data classi�cation, visualization of high-resolution datasets, and direct input

of dynamically changing 3D data. We decided to implement ray-casting in our

architectures because it provides very high image quality and leaves room for

algorithmic improvements.

In Chapter 4, we looked at the basic ray-casting algorithm and analyzed its

performance bottlenecks. We found that the same voxels have to be fetched

several times during each projection, because of the non-uniform mapping

of samples onto voxels, viewing dependent data traversal, and overlapping

computational neighborhoods. This leads to excessive memory bandwidth

requirements. Consequently, in Chapter 5, we introduced template-based data

traversal and ABC gradient estimation using previously interpolated samples.

Our improvements to the basic ray-casting algorithm lead to regular data

traversal and a fully pipelined dataow where each voxel is accessed exactly

once per projection.

In Chapter 6, we lay the groundwork for the architectures presented in

this dissertation. Our basic approach is to introduce a maximum amount of

concurrency by using both pipelining and parallel processing. To access the

data in parallel requires a distributed memory system. We presented a special
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memory interleaving technique for high-bandwidth access to vectors of volu-

metric data. We showed that the pipelined ray-casting algorithm combined

with arithmetic unit replication leads to a set of parallel rendering pipelines.

We also looked at important issues in parallel processing such as data and task

distribution and inter-processor communication. The chapter concludes with

the three parallel ray-casting algorithms that lead to the three architectures

presented in this dissertation.

Cube-3, presented in Chapter 7, implements ray-parallel processing where

all rendering pipelines compute data along a single ray in parallel. We intro-

duced sheared tri-linear interpolation that uses data coherency among neigh-

boring rays during interpolation. We showed through various software experi-

ments that the error introduced by this interpolation method is negligible, and

that the 12-neighborhood ABC gradient estimation leads to accurate gradients

without motion aliasing. We presented the Cube-3 architecture and discussed

its shortcomings due to the global fast bus that interconnects memory and

processing units.

In Chapter 8, we introduced the beam-parallel Cube-4 architecture that

exploits the inherent parallelism among a group of rays that start on the same

image scanline. We presented a novel beam-parallel dataow that allows to

locally connect memory and processing units and leads local communication

with constant bandwidth between the processing units. Only the output of the

compositing stage requires a global bus for the transport of pixels to the frame

bu�er. Together with a high-bandwidth memory system this novel approach

o�ers an intriguing architectural advantage over existing techniques for ray-

casting: The system performance can be scaled arbitrarily by increasing the

number of memory and processing units. Performance of Cube-4 is only limited

by current memory speeds.
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In Chapter 9, we introduce the main result of this dissertation, the Cube-4

slice-parallel architecture. Slice-parallel processing operates on slices of the

dataset which are retrieved by fetching consecutive voxel scanlines from the

memory. The advantage of slice-parallel processing versus beam-parallel pro-

cessing include correct tri-linear neighborhoods, simpler dataow, and simpler

implementation of perspective projections. We discussed the complete Cube-4

dataow for parallel and perspective projections with the concise representa-

tion of signal ow graphs. And we presented results from a hardware imple-

mentation of Cube-4 on the Teramac custom computing machine at Hewlett-

Packard Laboratories. Our results indicate linear scalability of performance

with the number of rendering pipelines.

We believe that Cube-4 is an important contributions towards real-time

visualization systems for volumetric data. It is a �rst step towards the de-

sign of add-on volume rendering accelerators for general-purpose machines.

Additionally, the provision for direct data input without pre-processing may

lead to special-purpose volume rendering hardware that can be embedded into

real-time 3D acquisition devices.

10.1 Future Directions

Our future work has two main components. We intend to improve and en-

hance the Cube-4 functionality for volume rendering applications. A research

contract with an industrial partner enables us to fabricate VLSI Cube-4 ASICs

for further experimentation. A more remote goal is to generalize the architec-

ture to include other applications such as texture mapping and image-based

rendering.

First, we want to implement and simulate the proposed mechanism for



CHAPTER 10. CONCLUSIONS 181

perspective ray-casting through slice scaling. In Chapter 9 we have outlined

this approach and the resulting dataow. However, this mechanism has not

been implemented or simulated to test the resulting image quality. We intend

to include perspective projections into our VHDL code and possibly into a

future Cube-4 hardware prototype on the Teramac.

We found that signal ow graphs provide us with a useful and intuitive

graphical representation of the dataow. Their main advantage is that they are

not a representation for a speci�c architecture, but rather for the dataow of

the underlying parallel algorithm. Structured modi�cations on the graph allow

to simplify and modify the dataow. Signal ow graphs have been extensively

used in the literature for VLSI array processor design [KL80, Pet93]. For

future enhancements of the Cube-4 dataow we intend to use formal methods

developed for array processor design, such as scheduling, projection, and re-

timing.

There are several techniques to map signal or data ow graphs onto SIMD,

systolic, wavefront, or even MIMD array architectures [Kun88]. The Cube-

4 architecture shown in Figure 81 is only one of many mappings of the SFG

onto hardware. We intend to develop di�erent architectures for di�erent price-

performance requirements by trading o� speed for hardware complexity. Fur-

thermore, we anticipate that our SFGs lead to the further improvement of

e�cient parallel volume rendering algorithms that do not require global voxel

communication. This may lead to near real-time implementations of volume

rendering on commercial parallel computers and traditional graphics acceler-

ators.

We have a research contract with Japan Radio Corporation (JRC) to design

and implement a Cube-4 VLSI prototype ASIC. We anticipate to integrate �ve

parallel rendering pipelines into one ASIC, thereby providing the ideal building
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block for single-chip or multi-chip Cube-4 implementations. We intend to

design and fabricate a PC board containing four Cube-4 ASICs, 32 MBytes

of DRAM, and a PCI bus interface. This will allow us to perform extensive

experimentation with 2563 datasets to gain more experience and insight into

all system and software aspects associated with a real-time volume rendering

accelerator board.

We foresee that Cube-4 will become a commercially interesting solution

for volume rendering acceleration in PCs, workstations, and in combined

acquisition-visualization systems. However, we also believe that the poten-

tial of the Cube-4 architecture goes beyond volume rendering applications.

The development in computer graphics goes towards increased scene realism

using texture mapping or image-based rendering [CW93, MB95, SD96]. We

can consider the set of texture images (mipmapped or not) and the set of

images with depth required for these applications as 3D volumetric datasets.

It is no surprise that todays texture mapping hardware is used to approxi-

mate volume rendering. Conversely, we believe that our approach to volume

rendering has great merits for texture mapping and image-based rendering.

Texture mapping involves calculation of texture coordinates, resampling,

�ltering, and blending of texture data into the frame-bu�er [SKvW+92].

Image-based rendering mainly consists of image-warping and image composit-

ing, where image-warping can be further decomposed into image transforma-

tion, resampling, and �ltering operations [Wol90]. The similarities between

texture mapping, image-warping, and volume rendering are obvious. We in-

tend to include coordinate transformations and higher-order �ltering opera-

tions into the SFG framework presented in this dissertation. We want to

investigate and simulate the resulting dataow and design an appropriate new
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architecture based on our experiences with Cube-4. We believe that the ad-

vantages of Cube-4, such as high memory bandwidth, modularity, and scalable

performance, will be of great value for future texture and image-based render-

ing systems.

The combination of high-quality real-time volume rendering, texture map-

ping, and image-based rendering is a natural step in the evolution of computer

graphics. Computer graphics drawing primitives have traditionally included

vectors and surfaces. The success of texture mapping established 3D sampled

data as an additional important component of the rendering pipeline. As a

long term goal, we intend to enhance the graphics pipeline by 3D frame-bu�er

hardware that supports resampling, �ltering, gradient estimation, and render-

ing of 3D volumetric or 2D image data. We believe that the results of this

dissertation are a �rst and admittedly small step in this direction.
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